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Inference in Mildly Explosive Autoregressions

Xuewen Yu and Mohitosh Kejriwal

Abstract

Mildly explosive autoregressions have been extensively employed in recent theoret-
ical and applied econometric work to model the phenomenon of asset market bubbles.
An important issue in this context concerns the construction of confidence intervals
for the autoregressive parameter that represents the degree of explosiveness. Exist-
ing studies rely on intervals that are justified only under conditional homoskedastic-
ity/heteroskedasticity. This paper studies the problem of constructing asymptotically
valid confidence intervals in a mildly explosive autoregression where the innovations are
allowed to be unconditionally heteroskedastic. The assumed variance process is general
and can accommodate both deterministic and stochastic volatility specifications com-
monly adopted in the literature. Within this framework, we show that the standard
heteroskedasticity-autocorrelation consistent (HAC) estimate of the long-run variance
converges in distribution to a nonstandard random variable that depends on nuisance
parameters. Notwithstanding this result, the corresponding t-statistic is shown to still
possess a standard normal limit distribution. To improve the quality of inference in
small samples, we propose a dependent wild bootstrap-t procedure and establish its
asymptotic validity under relatively weak conditions. Monte Carlo simulations demon-
strate that our recommended approach performs favorably in finite samples relative
to existing methods across a wide range of volatility specifications. Applications to
international stock price indices and US house prices illustrate the relevance of the
advocated method in practice.

Keywords: mildly explosive, heteroskedasticity, nonstationary volatility, HAC,
long-run variance, bubbles
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1 Introduction

Over the past decade, the mildly explosive autoregressive (MEA) framework has emerged as

a popular econometric device for modeling the phenomenon of asset market bubbles. The

framework has been extensively utilized to develop a multitude of procedures for detecting

and dating the origination and termination of bubbles as well as constructing asymptotically

valid confidence intervals for the size of the bubble. These methods equip policymakers

with a powerful set of econometric tools that can be employed to mitigate the potentially

adverse consequences of a bubble and thereby maintain economic and financial stability. The

techniques have been successfully applied to a variety of asset prices including stock prices,

house prices, cryptocurrencies, commodity prices, etc. For detailed reviews of this literature,

see, inter alia, Phillips and Shi (2020) and Skrobotov (2023).

Introduced by Phillips and Magdalinos (2005, 2007a), the MEA framework posits that

the autoregressive parameter which represents the degree of explosiveness (i.e., the size of

the bubble) evolves as a function of the sample size (T ) according to ρT = 1 + c/kT , c >

0, kT → ∞, kT/T → 0, as T → ∞. The motivation for adopting this specification emanated

from the fact that modeling the parameter as fixed and independent of the sample size

(i.e., ρT = ρ > 1) precludes the application of an invariance principle so that the limit

distribution of its least squares estimate depends on the underlying error distribution that

is typically unknown in practice (Anderson, 1959). Wang and Yu (2015) show that in the

fixed parameter autoregression of order one with an intercept, the standard t-statistic on the

autoregressive coefficient has a nonstandard limit distribution that depends on the initial

value of the stochastic process as well as the true values of the model parameters. On the

other hand, modeling the autoregressive coefficient as local-to-unity (ρT = 1+c/T ) facilitates

the application of functional central limit theory and leads to a limit distribution that is not

reliant on the error distribution but depends on the local-to-unity parameter c which cannot

be consistently estimated (Phillips, 1987). Phillips and Magdalinos (2007a) show that the

MEA framework permits the application of an invariance principle that induces a Cauchy

limit distribution for the least squares estimate without assuming Gaussian errors.

While the Cauchy limit was initially derived assuming independently and identically

distributed (i.i.d.) innovations, subsequent work has demonstrated the same limit distribu-

tion continues to hold under weak or strong dependence in the errors (Magdalinos, 2012),

anti-persistent errors (Lui et al., 2021), and conditional heteroskedasticity (Arvanitis and

Magdalinos, 2018). Fei (2018) and Liu and Peng (2019) show that the inclusion of a fixed
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non-zero drift in the first order MEA model with i.i.d. errors leads to a standard normal limit

distribution for the t-statistic. Assuming weakly dependent and conditionally homoskedastic

innovations, Guo et al. (2019) show that the t-statistic based on a heteroskedasticity and au-

tocorrelation robust (HAR) estimate of the standard error follows a Student’s t distribution

in large samples. They further establish the invariance of the limit distribution to a possi-

ble drift in the process, regardless of whether the drift dominates the explosive stochastic

component. Chan et al. (2012) develop an empirical likelihood-based confidence interval in

the first order autoregressive model with i.i.d. errors that is asymptotically valid for station-

ary, unit root, near-integrated and fixed parameter explosive processes thereby providing a

unified approach to inference.

While the aforementioned inference methods are justified under conditional heteroskedas-

ticity, they rule out the presence of unconditional heteroskedasticity. A plethora of empirical

studies, however, document that several macroeconomic and financial time series exhibit

time-varying unconditional volatility profiles. For example, Sensier and van Dijk (2004) find

that approximately 80% of 214 macroeconomic time series over the period 1959-99 were

subject to a break in unconditional volatility with the break date estimated at 1984 and

associated with a reduction in volatility for a large number of series (the so-called “Great

Moderation”). Harvey et al. (2016) reject the null hypothesis of stationary volatility in the

prices of two types of crude oil, three precious metals (gold, silver and platinum) and two

non-ferrous metals (aluminum and copper) using a battery of four tests developed in Cava-

liere and Taylor (2007b). Based on the rejection patterns of the tests, they conclude that a

single discrete break volatility model or a trending volatility model might be appropriate for

these series. Using the same set of tests, Astill et al. (2018) also find statistically significant

evidence against stationary volatility for three out of five major stock price indices: the

FTSE All Share index (UK), the Nasdaq Composite index (USA) and the Nikkei 225 index

(Japan). Kurozumi et al. (2020) use estimated variance profiles to document the presence

of time-varying volatility in the twelve largest cryptocurrencies by capitalization.

Motivated by these considerations, this paper studies the problem of constructing asymp-

totically valid confidence intervals in a mildly explosive autoregression with weakly dependent

innovations that are allowed to be unconditionally heteroskedastic. Our framework adopts

a general specification for the volatility process that can accommodate both deterministic

and stochastic volatility specifications commonly employed in the literature (see section 2).

Within this framework, we show that the standard heteroskedasticity-autocorrelation con-

sistent (HAC) estimate of the long-run variance converges in distribution to a nonstandard

2



random variable that depends on nuisance parameters. Notwithstanding this result, the

corresponding t-statistic is shown to still possess a standard normal limit distribution. To

improve the quality of inference in small samples, we propose a dependent wild bootstrap-

t procedure that can simultaneously account for time-varying unconditional volatility and

weak dependence in the errors. The large sample validity of the proposed approach is estab-

lished under relatively weak conditions. The theoretical analysis does, however, rule out the

possibility that the sign of the current shock affects future volatility, commonly referred to

as leverage. This is due to the fact that conditional on the data, the bootstrap innovations

are independent over time. Monte Carlo simulations demonstrate that our proposed ap-

proach performs favorably in finite samples relative to existing methods across a wide range

of volatility specifications. In particular, the dependent wild bootstrap confidence interval is

shown to be adept at maintaining coverage close to the nominal confidence level while con-

trolling average length both for data generating processes with and without leverage effects.

The relevance of the proposed method in practice is illustrated in two empirical applications

concerning international stock price indices and US house prices, respectively.

The bootstrap approach has been employed in prior work concerning inference in fixed

parameter explosive autoregressive processes. Basawa et al. (1989) establish the asymptotic

validity of the standard i.i.d. bootstrap in the first order autoregressive process with i.i.d.

errors. More recently, Cavaliere et al. (2020) develop bootstrap-based inference procedures

in non-causal autoregressions with heavy-tailed innovations. They show that the asymptotic

distribution of the least squares estimate in this framework is non-pivotal in that it depends

on the tail behavior of the innovations. To address this issue, three alternative choices for

the bootstrap are considered, namely, the wild bootstrap, the permutation bootstrap and

a permutation wild bootstrap. Sufficient conditions for the validity of each of these choices

in large samples are provided. In contrast, the goal of the present paper is to study the

properties of asymptotic and wild bootstrap procedures for conducting inference within the

MEA framework with weakly dependent errors and time-varying volatility.

Our paper is also closely related to a strand of the literature that studies stable and unit

root autoregressions under unconditional heteroskedasticity. Working in a stable autore-

gressive framework with deterministic volatility, Phillips and Xu (2006) develop inference

procedures based on a non-parametric kernel-based estimate of the variance function while

Xu and Phillips (2008) employ the estimated variance function to propose adaptive least

squares estimation of the autoregressive coefficients and demonstrate via simulations the ef-

ficiency gains achievable over ordinary least squares estimation. Goncalves and Kilian (2004)
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propose a wild bootstrap approach to inference in stable autoregressions under conditional

heteroskedasticity of unknown form while Xu (2008) extends their work by showing that the

wild bootstrap remains valid under time-varying unconditional volatility. Xu (2008) also

studies the effects of allowing for deterministic and stochastic volatility on the consistency,

rate of convergence and limit distributions of the least squares estimates. The non-robustness

of standard unit root tests to unconditional heteroskedasticity was demonstrated, inter alia,

by Cavaliere (2005) and Cavaliere and Taylor (2007a), who show that the limit distributions

of these tests are non-pivotal and depend on the time-varying variance profile. Cavaliere

and Taylor (2007a) and Beare (2018) propose unit root tests that employ a non-parametric

estimate of the variance profile where the former uses critical values simulated from the limit

distribution while the latter is based on standard null asymptotic critical values. Cavaliere

and Taylor (2008, 2009) develop wild bootstrap tests of the unit root hypothesis and estab-

lish their asymptotic validity while Boswijk and Zu (2018) propose adaptive wild bootstrap

unit root tests based on non-parametric volatility estimation and show that they achieve

the same asymptotic power envelope as in the known volatility case. Harvey et al. (2016)

show that the recursive right-tailed unit root tests proposed by Phillips et al. (2011) for

detecting explosive behavior are not robust to nonstationary volatility and present a wild

bootstrap approach to inference that is effective at controlling size while retaining power

against locally explosive (as opposed to mildly explosive) alternatives. It is useful to note

that the use of the bootstrap in this strand of the literature is primarily motivated by the

non-pivotal nature of the limit distributions of standard test statistics that depend on the

unknown volatility process. In contrast, the dependent wild bootstrap adopted in the cur-

rent paper is motivated by its ability to provide a more reliable approximation to the finite

sample distribution of the standard HAC-based t-statistic than that afforded by its standard

normal limit distribution.

In a recent contribution, Phillips (2022) develops a unified approach to estimation and

inference in nonstationary time series with autoregressive roots near unity. His approach

allows both local and mild departures from unity and entails consistent estimation of a

localizing rate parameter that characterizes such departures. Confidence intervals for the rate

parameter facilitate classification of the process as local-to-unity, mildly integrated or mildly

explosive. This approach can be viewed as complementary to the approach that constructs

confidence intervals for the autoregressive parameter conditional on pretest evidence against

a unit root (e.g., Phillips et al. 2011; Phillips et al., 2015). The analysis in Phillips (2022),

while allowing for weak dependence in the errors, rules out unconditional heteroskedasticity
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in the errors which is the primary focus of our paper. Extending the approach in Phillips

(2022) to allow for heteroskedasticity in the noise component is an interesting avenue for

future research but outside the scope of the present paper.

The rest of the paper is organized as follows. Section 2 lays out the modeling frame-

work and associated assumptions. Section 3 discusses methods for constructing asymptotic

confidence intervals for the autoregressive parameter. Section 4 proposes a dependent wild

bootstrap-t procedure for inference and develops its large sample properties. Section 5

presents a set of Monte Carlo experiments comparing the finite sample adequacy of the

different methods in terms of coverage and expected length for a variety of volatility spec-

ifications. Section 6 details two empirical applications to illustrate the practical relevance

of the proposed approach. Section 7 concludes. Supplementary (not for publication) Ap-

pendices A and B contain the proofs of the theoretical results and additional Monte Carlo

results are reported in Supplementary Appendix C. As a matter of notation,
p→ denotes

convergence in probability,
w→ denotes weak convergence, and

w→p denotes weak convergence

in probability under the bootstrap measure.

2 The Model and Assumptions

Consider a scalar random variable yt generated by the following mildly autoregressive process

with possibly non-zero drift:

yt = µT + ρTyt−1 + ut t = 1, ..., T (1)

ρT = 1 +
c

kT
, c > 0 (2)

ut = C(L)et =
∞∑
j=0

cjet−j, et = σtεt (3)

The data generating process (DGP) in (1)-(3) allows for weakly dependent errors mod-

eled via the polynomial C(.) and for conditional as well as unconditional heteroskedasticity

modeled through the volatility function σt. A special case of this DGP with σt = σ ∀ t, was
considered by Phillips and Magdalinos (2007b) and Guo et al. (2019). Specifically, our

analysis is based on the following assumptions:

Assumption 1: (a) kT = Tα, 0 < α < 1; (b) µT

√
kT → ν ∈ [0,∞] as T → ∞.

Assumption 2: (a) The lag polynomial satisfies C(z) ̸= 0 for all |z| ≤ 1, C(1) ∈ (0,∞)

and
∑∞

j=0 j|cj| < ∞; (b) εt ∼ i.i.d.(0, 1) with E(ε4+κ1
t ) ≤ K1 < ∞ for some κ1 > 0; (c)
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for some strictly positive deterministic sequence {aT}, {σt} satisfies a−1
kT
σ⌊kT r⌋

w→ g(r), r ∈
[0,+∞),

∫ 1

0
g(r)2dr > 0 a.s.,

∫∞
0
g(r)2dr < ∞ a.s., g(1) > 0 a.s., and suptE(a−1

kT
σt)

4+κ2 ≤
K2 < ∞ for some κ2 > 0; (d) σt is independent of εs for any t and s; (e) the initial value

y0 is independent of {ut}Tt=1 and a−1
kT
y0 = o(k

1/2
T ).

Assumption 3: The sequence {aT} satisfies aT ∝ T γ, where γ is a constant with γ ∈ [0,∞).

Assumption 1(a) characterizes the mildly explosive framework developed by Phillips and

Magdalinos (2007a,b) whereby the explosive root approaches unity at a sufficiently slow rate

relative to the sample size.1 Assumption 1(b) specifies the drift component µT following Guo

et al. (2019) and allows the drift to be small (ν ∈ [0,∞)) or large (v = ∞). Given that the

magnitude of the drift is typically unknown in practice, potential model misspecification can

be avoided by including a constant in the estimated regression.

Assumption 2(a) imposes conditions on the lag polynomial that ensures that the errors

ut are weakly dependent and admits a Beveridge-Nelson decomposition (see Phillips and

Solo, 1992). Assumption 2(b) specifies the innovations εt to be i.i.d. with bounded fourth

moments. While we adopt the i.i.d. assumption to simplify the theoretical analysis, we

expect that the results in the paper will continue to hold under the weaker condition that

{εt,Ft} is a martingale difference sequence with respect to Ft = σ-field{εs, s ≤ t}, satisfying
(i) E(ε2t ) = 1 for all t; (ii) T−1

∑T
t=1 ε

2
t

p→ 1; and (iii) suptE(ε
4+κ1
t ) ≤ K1 <∞ for some κ1 > 0.

Assumption 2(c) states that the appropriately scaled volatility process weakly converges to a

function g(.) that satisfies three conditions: (i) a lower bound condition (
∫ 1

0
g(r)2dr > 0 a.s.);

(ii) square integrability (
∫∞
0
g(r)2dr < ∞ a.s.); (iii) a positivity condition at one (g(1) >

0 a.s.). Condition (i) facilitates the application of a central limit theorem to the partial sums

of the errors {ut}, conditional on {σt} [see Theorem 2(d) below]. Conditions (ii) and (iii)

ensure the non-degeneracy of the random variables appearing in the limit distribution of the

autoregressive parameter estimate (see section 3.2). Conditions (i) and (ii) were also imposed

by Cavaliere and Taylor (2009) in their analysis of unit root tests under heteroskedasticity

(see their Assumption 2). Assumption 2(c) allows for a wide class of volatility processes

including a variety of deterministic and non-deterministic specifications for {σt} commonly

employed in the literature. In the deterministic case, the assumption allows single and

multiple volatility shifts, linearly and polynomially trending volatility (with an appropriate

1While the formulation in Phillips and Magdalinos (2007a) only requires kT → ∞, kT /T → 0, Assumption
1(a) has been adopted in several studies (see, e.g., Phillips and Magdalinos, 2007b; Magdalinos, 2012;
Arvanitis and Magdalinos, 2018).
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choice of aT ), and smooth transition breaks. In the non-deterministic case, the class of

volatility processes allowed includes non-stationary autoregressive stochastic volatility (SV)

models (Hansen, 1995), SV models with jumps (Georgiev, 2008), non-stationary nonlinear

heteroskedastic models with stochastically trending volatility, and near-integrated GARCH

models.(see Cavaliere and Taylor, 2009, for a detailed discussion of the class of volatility

processes permissible under this assumption). Assumption 2(d) precludes the possibility

that the sign of the current shock affects future volatilities, often referred to as leverage.

This assumption is needed to ensure the asymptotic validity of the proposed dependent wild

bootstrap approach since the wild bootstrap innovations cannot replicate any leverage effects

that may be present in the original data. Nevertheless, we examine the sensitivity of the

various methods to the failure of this assumption via simulations in Section 5. Assumption

2(e) guarantees the invariance of the limit theory to the initial condition. Defining Gt−1 = σ-

field{σs+1, εs, s ≤ t − 1}, we have σ2
t = V ar(yt|Gt−1), i.e., the conditional variance of the

time series yt is represented by the process σ2
t .

The specification for aT adopted in Assumption 3 nests all of the volatility models in

the examples considered by Cavaliere and Taylor (2009). Specifically, when γ = 0 and

aT = 1, it incorporates the models in their examples 1-4 and when γ > 0, it incorporates

the models in their examples 5 and 6. Without loss of generality, we henceforth directly set

aT = T γ instead of aT = ψT γ, ψ > 0, since ψ is not identified but could be absorbed into

the unknown volatility function g(·). As will be seen in the subsequent analysis, aT will have

a non-negligible effect on the asymptotic theory, a feature also observed by Xu (2008) in the

context of stationary autoregressive models with nonstationary volatility.

Remark 1 While the errors {ut} are weakly dependent (or short memory) in our frame-

work, our assumptions allow {σt} to be a stationary long memory process. To see this, note

that regardless of whether {σt} is short memory or stationary long memory, the indepen-

dence of {σt} and {εt} [Assumption 2(d)] ensures that {et} is serially uncorrelated, i.e.,

Cov(et, es) ̸= 0 for all t ̸= s. Consequently, as long as the process {a−1
kT
σt} has uniformly

bounded second moments [as ensured by Assumption 2(c)], the memory structure of {ut} is

entirely determined by the conditions imposed on the lag polynomial C(.) in Assumption 2(a).

Remark 2 Assumption 3 allows aT to diverge with T when γ > 0. This possibility opens

up an interesting connection between the properties of the process {ut} in our framework

and those of a stationary long memory process (i.e., ut ∼ I(d) such that ∆dut ∼ I(0), with

0 < d < 0.5). Specifically, in our framework, the partial sums satisfy
∑[Tr]

t=1 ut = Op(T
γ+1/2)
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whereas if ut ∼ I(d),
∑[Tr]

t=1 ut = Op(T
d+1/2) [see, e.g., Davidson and De Jong (2000)]. Thus,

if d = γ, the two processes possess the same signal strength. The difference arises in their

limit distributions: in our framework (see Theorem 2 below), [vuT ]
−1/2a−1

T T−1/2
∑[Tr]

t=1 ut
w→

B(r), where vuT = V ar(a−1
T T−1/2

∑[Tr]
t=1 ut) and B(.) denotes a standard Brownian motion

on [0, 1]; if ut ∼ I(d), [vuT ]
−1/2a−1

T T−1/2
∑[Tr]

t=1 ut
w→ Bd(r), where Bd(.) denotes a fractional

Brownian motion on [0, 1]. A potentially interesting extension of our framework would be to

explicitly allow for long memory in {ut} via appropriate conditions on C(.) as in Magdalinos

(2012). The exploration of this extension is left for future research. We thank an anonymous

referee for his/her suggestion to include this discussion.

3 Asymptotic Confidence Intervals

The objective of the paper is to analyze the properties of alternative methods for constructing

confidence intervals for the autoregressive parameter ρT in (1) in the potential presence

of unconditional heteroskedasticity of the form specified in Assumption 2. This section

first discusses existing methods based on an asymptotic approximation to the sampling

distribution of the least squares estimate of ρT or the corresponding t-statistic under the

assumption that the innovations are unconditionally homoskedastic, i.e., E(e2t ) = σ2 for all

t. Subsequently, we consider the standard t-statistic based on the usual heteroskedasticity

and autocorrelation-consistent (HAC) estimate of the long-run variance of ut (e.g., Andrews,

1991). We show that despite the nonstandard nature of the limit distribution of the HAC

estimate, the t-statistic is still asymptotically standard normal. In what follows, we denote

zt = (1, yt−1)
′ and ι2 = (0, 1)′.

3.1 Existing Inference Methods

Phillips and Magdalinos (2007a) considered a version of (1)-(3) with no drift under the

assumption that the errors ut are i.i.d. and square integrable. They establish that the

following limit theory holds as T → ∞:

kTρ
T
T

2c
(ρ̃T − ρT )

w→ C and
ρTT

ρ2T − 1
(ρ̃T − ρT )

w→ C (4)

where ρ̃T = (
∑T

t=1 y
2
t−1)

−1(
∑T

t=1 yt−1yt) denotes the least squares estimate and C denotes

a standard Cauchy random variable. It follows that a 100(1 − δ)% confidence interval for

ρT can be constructed as (
ρ̃T ± ρ̃2T − 1

ρ̃TT
Cδ
)

(5)
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where Cδ is the two-tailed δ percentile critical value of the standard Cauchy distribution. For

instance, a 95% confidence interval will use the critical value C0.05 = 12.7 compared to the

corresponding Gaussian critical value of 1.96. We will refer to (5) as the PM interval.

Phillips and Magdalinos (2007b) showed that (4) remains valid even when the errors ut are

weakly dependent and satisfy Assumption 1(a) while imposing conditional homoskedasticity

by assuming et ∼ i.i.d.(0, σ2). Magdalinos (2012) extended the validity of (4) to include error

processes that can be strongly dependent (i.e., exhibiting long memory) thereby demonstrat-

ing the robustness of the interval (5) to a general dependence structure in the innovation

sequence. More recently, Arvanitis and Magdalinos (2018) established that the Cauchy limit

theory is also invariant to a wide class of stationary conditionally heteroskedastic error pro-

cesses with weak or strong dependence.2

Based on the limit result (4), Guo et al. (2019) show that under the assumption that

the errors ut are i.i.d., the OLS t-statistic that does not correct for heteroskedasticity or

autocorrelation has a standard normal limiting distribution. In the no drift case (µT = 0),

this t-statistic is given by

tPM =
ρ̃T − ρT√

s̃2T

(∑T
t=1 y

2
t−1

)−1

w→ N(0, 1)

where s̃2T = (T−1)−1
∑T

t=1(yt−ρ̃Tyt−1)
2. When the estimated regression includes a constant,

Guo et al. (2019) establish, under Assumptions 1 and 2(e), that

tMED =
ρ̂T − ρT√

ŝ2T ι
′
2

(∑T
t=1 ztz

′
t

)−1

ι2

w→ N(0, 1)

where (µ̂T , ρ̂T )
′ =
(∑T

t=1 ztz
′
t

)−1∑T
t=1 ztyt, and ŝ

2
T = (T − 2)−1

∑T
t=1(yt − µ̂T − ρ̂Tyt−1)

2.

In the case of weakly dependent errors ut given by (3) where et ∼ i.i.d.(0, σ2) with finite

fourth moments and C(.) satisfies Assumption 2(a), Guo et al. (2019) develop an inference

procedure based on a orthonormal series long-run variance estimator that accounts for the

dependence structure. Specifically, they propose the t-statistic

t̃MED =
ρ̂T − ρT√

λ̂2Kι
′
2

(∑T
t=1 ztz

′
t

)−1

ι2

(6)

2Lee (2018) considers a framework in which ut is assumed to be strong mixing with exponentially decaying
coefficients and finite fourth moments. In contrast, Arvanitis and Magdalinos (2018) does not require strong
mixing and instead relies on a L1-mixingale condition on et which does not place restrictions on the moments
of ut higher than order 2.
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where λ̂2K is the estimate of the long-run variance of ut constructed from the estimated

residuals ût = yt − µ̂T − ρ̂Tyt−1 as

λ̂2K =
1

K

K∑
j=1

[
1√
T

T∑
t=1

ϕj

(
t

T

)
ût

]2
(7)

In (7), K is an even constant and ϕj(x) =
√
2 sin(2πjx) and ϕ2j−1(x) =

√
2 cos(2πjx) are

the Fourier basis functions. Guo et al. (2019) show that under the fixed-K asymptotics

where T → ∞ for a given K, t̃MED
w→ tK , where tK is the Student’s t distribution with

K degrees of freedom.3 The choice of K is data-dependent and based on the asymptotic

mean squared error criterion implemented using the AR(1) plug-in procedure. This value of

K is then rounded to the closest even number between 4 and T (see Phillips, 2005).

All of the aforementioned confidence intervals are predicated upon the assumption of

unconditionally homoskedastic innovations. In Section 5, we will examine their finite sample

performance for data generating processes that fail this assumption via simulations. These

simulation results would allow us to assess the degree to which these methods are sensitive

to the underlying homoskedasticity assumption.

3.2 HAC-Based Inference

We now consider an asymptotic approach to inference that, in contrast to the extant methods

described in Section 3.1, remains valid even in the presence of unconditional heteroskdasticity

of the form allowable under Assumption 2. Our approach is simply based on the standard t-

statistic that employs a HAC estimate of the standard errors to account for heteroskedasticity

and autocorrelation (e.g., Newey and West, 1987; Andrews, 1991). In order to define this

statistic, we introduce the following notation. Let ȳ = T−1
∑T

t=1 yt, ȳ−1 = T−1
∑T−1

t=0 yt,

ū = T−1
∑T

t=1 ut, ẏt−1 = yt−1 − ȳ−1, u̇t = ut − ū for t = 1, · · · , T and

Ω̂ =
T−1∑

j=−(T−1)

w(j/bT )Γ̂(j), Γ̂(j) = T−1

T−|j|∑
t=1

ẏt−1ûtẏt−1+|j|ût+|j| (8)

with ût the residuals defined as in (7), w(·) is a kernel function and bT is the bandwidth.

The conditions on w(·) and bT will be specified later. Then, letting QT = T−1
∑T

t=1 ẏ
2
t−1,

and Λ̂ = T−1Q−2
T Ω̂, the HAC-based t-statistic can be expressed as

thac :=
ρ̂T − ρT

Λ̂
1
2

(9)

3Under joint asymptotics where K → ∞ as T → ∞ with K/T → 0, t̃MED
w→ N(0, 1).
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We will now establish that under Assumptions 1 and 2 accompanied by suitable conditions

on w(·) and bT , the statistic thac has a standard normal limit distribution. To this end, we

first decompose yt in (1) into two parts, i.e., yt = dt + µT (ρ
t
T − 1)kT/c, where dt follows

dt = ρTdt−1 + ut, d0 = y0 (10)

Now dt is a mildly explosive process without drift while µT (ρ
t
T − 1)kT/c is a deterministic

nonlinear trend component when µT ̸= 0. The following result derives the limits of two

random quantities which will be useful in the subsequent analysis, where MN(0, Vx) and

MN(0, Vy) denote mixed Gaussian random variables with mixing variates Vx and Vy, respec-

tively.

Theorem 1 Denote XT := a−1
T k

−1/2
T

∑T
t=1 ρ

−(T−t)−1
T ut, YT := a−1

kT
k
−1/2
T

∑T
t=1 ρ

−t
T ut. Under

Assumptions 1-2, [XT , YT ]
w→ [X, Y ], where X and Y are independent random variables such

that X ∼MN(0, Vx), Y ∼MN(0, Vy) with Vx = C(1)2g(1)2

2c
, Vy = C(1)2

∫∞
0

e−2crg(r)2dr.

Remark 3 In the conditionally homoskedastic case where g(r) = σ, ∀r ∈ [0,+∞), Theorem

1 degenerates to the results in Phillips and Magdalinos (2007a), as Vx = Vy =
C(1)2σ2

2c
.

Next, we obtain the limit distribution of the least squares estimate ρ̂T of ρT in (1). Note

that

ρ̂T − ρT =

∑T
t=1(yt−1 − ȳ−1)ut∑T
t=1(yt−1 − ȳ−1)2

=

∑T
t=1 yt−1ut − T−1

∑T
t=1 yt−1

∑T
t=1 ut∑T

t=1 y
2
t−1 − T−1(

∑T
t=1 yt−1)2

(11)

The following theorem presents the limits of the sample statistics appearing in (11):

Theorem 2 Under Assumptions 1-3, defining 1/∞ = 0, we have the following joint con-

vergence results:

(a) (a2kTµ
2
Tk

3
Tρ

2T
T )−1

T∑
t=1

y2t−1
w→

 Y 2

2cν2

1
2c
(Y
ν
+ 1

c
)2

γ > 0

γ = 0

(b) (akTµTk
2
Tρ

T
T )

−1

T∑
t=1

yt−1
w→

 Y
cν

1
c
(Y
ν
+ 1

c
)

γ > 0

γ = 0
(12)

(c) (akT aTµTk
3/2
T ρTT )

−1

T∑
t=1

yt−1ut
w→

 XY
ν

X(Y
ν
+ 1

c
)

γ > 0

γ = 0

(d) a−1
T T−1/2

T∑
t=1

ut
w→ U ∼MN(0, σ2

u), σ2
u = C(1)2

∫ 1

0

g(r)2dr,

U is independent of X and Y .

11



Now, using the results of Theorem 2, it follows that

(akT aTµTk
3/2
T ρTT )

−1

(
T∑
t=1

yt−1ut − T−1

T∑
t=1

yt−1

T∑
t=1

ut

)

= (akT aTµTk
3/2
T ρTT )

−1

T∑
t=1

yt−1ut − T−1/2k
1/2
T (akTµTk

2
Tρ

T
T )

−1

T∑
t=1

yt−1 × a−1
T T−1/2

T∑
t=1

ut

= (akT aTµTk
3/2
T ρTT )

−1

T∑
t=1

yt−1ut −Op(T
−1/2k

1/2
T )

w→ X

[
Y

ν
+

1

c
1(γ = 0)

]
(13)

(a2kTµ
2
Tk

3
Tρ

2T
T )−1

(
T∑
t=1

y2t−1 − T−1(
T∑
t=1

yt−1)
2

)

= (a2kTµ
2
Tk

3
Tρ

2T
T )−1

T∑
t=1

y2t−1 − T−1kT [(akTµTk
2
Tρ

T
T )

−1

T∑
t=1

yt−1]
2

= (a2kTµ
2
Tk

3
Tρ

2T
T )−1

T∑
t=1

y2t−1 −Op(T
−1kT )

w→ 1

2c

[
Y

ν
+

1

c
1(γ = 0)

]2
(14)

We thus have the asymptotic distribution of ρ̂T as stated in the following corollary:

Corollary 1 Under Assumptions 1-3,

a−1
T akTµTk

3/2
T ρTT (ρ̂T − ρT )

w→ 2cX
Y
ν
+ 1

c
1(γ = 0)

(15)

Remark 4 In the special case ν = ∞, the limit distribution in (15) reduces to 2c2X, which

implies ρ̂T is asymptotically mixed normal. A similar result assuming σt = σ in (3) was

obtained in Guo et al. (2019) where X reduces to a N(0, C(1)2σ2/2c) random variable. In

the more general case where the volatility structure follows Assumption 2, the mixing variate

Vx takes a more complex form that depends on the unknown function g(·).

In order to obtain the limit distribution of µ̂T , we make the following additional assump-

tion that restricts the rate at which volatility grows with the sample size:

Assumption 3′: γ < 1/2

The upper bound on the rate of growth of aT specified in Assumption 3′ ensures the

consistency of the intercept estimate µ̂T . Interestingly, this upper bound condition coincides

12



with that in Xu (2008) to ensure the consistency of the intercept estimate in the stationary

autoregressive framework. To obtain the distribution of µ̂T , observe that

a−1
T T 1/2(µ̂T − µT ) = a−1

T T 1/2

(
T−1

T∑
t=1

ut − T−1

T∑
t=1

yt−1(ρ̂T − ρT )

)

= a−1
T T−1/2

T∑
t=1

ut − T−1/2k
1/2
T × (akTµTk

2
Tρ

T
T )

−1

T∑
t=1

yt−1 × a−1
T akTµTk

3/2
T ρTT (ρ̂T − ρT )

= a−1
T T−1/2

T∑
t=1

ut −Op(T
−1/2k

1/2
T )

w→ U (16)

We can thus state the following corollary:

Corollary 2 Under Assumptions 1-2 and 3 ′,

a−1
T T 1/2(µ̂T − µT )

w→ U (17)

We now establish a result that applies when ν = 0, i.e., the no drift case:

Theorem 3 Under Assumptions 1-3, with ν = 0, we have the following joint convergence

results:

(a) (a2kT k
2
Tρ

2T
T )−1

T∑
t=1

y2t−1
w→ 1

2c
Y 2

(b) (akT k
3/2
T ρTT )

−1

T∑
t=1

yt−1
w→ 1

c
Y (18)

(c) (akT aTkTρ
T
T )

−1

T∑
t=1

yt−1ut
w→ XY

(d) a−1
T T−1/2

T∑
t=1

ut
w→ U ∼MN(0, σ2

u), σ2
u = C(1)2

∫ 1

0

g(r)2dr,

U is independent of X and Y .

The following corollary states the limit distribution of the OLS estimator when ν = 0:

Corollary 3 Under Assumptions 1-3, with ν = 0, we have

a−1
T akT kTρ

T
T (ρ̂T − ρT )

w→ 2cX

Y

13



Remark 5 In the stationary autoregressive framework analyzed by Xu (2008), the limit dis-

tribution of the autoregressive estimates does not depend on the volatility scale aT while the

limit distribution of the estimate of the deterministic component depends on aT . In the

present context, the limit distribution of both ρ̂T and µ̂T depend on the volatility scale. More-

over, when the deterministic component is large enough, the limit distribution of ρ̂T depends

on the magnitude of the deterministic component as well (Corollary 1).

Remark 6 The limit distribution of ρ̂T under either ν > 0 or ν = 0 does not require

Assumption 3′, i.e., the rate of growth of volatility need not be restricted to be slower than

O(T 1/2). Intuitively, the signal from the explosive component is strong enough that the

consistency and limit distribution of ρ̂T remain unaltered by the growth rate of volatility

in the noise component.

Remark 7 The limit distribution of ρ̂T is non-pivotal regardless of the magnitude of the drift

as it depends on the unknown volatility process g(·). In particular, the standard inferential

result (4) based on the Cauchy distribution as derived in Phillips and Magdalinos (2007a,

2007b) is no longer valid in the current context and thus the PM interval (5) does not have

asymptotically correct coverage. The finite sample implications of this result are investigated

via simulations in Section 5.

The final step in establishing the limit distribution of the t-statistic (9) entails obtaining

the limit of the HAC estimator Ω̂ defined in (8). We make the following assumption that

governs the behavior of the weight function w(·) and the bandwidth bT :

Assumption 4: (i) The function w(·) is a continuous and even function with |w(·)| ≤
1, w(0) = 1 and

∫∞
-∞w2(x) <∞; (ii) The bandwidth satisfies b−1

T + k
−1/2
T bT → 0 as T → ∞.

The following Lemma states a key result instrumental in deriving the asymptotic distri-

bution of the long-run variance estimator Ω̂:

Lemma 1 Define ΦT (j) = a−2
T k−1

T

T−|j|∑
t=1

ρ
−2(T−t)+|j|−2
T utut+|j|. Under Assumptions 1-4, as

T → ∞, the following result holds:
T−1∑

j=−(T−1)

w(j/bT )ΦT (j)
w→ Vx.

We can then state the following result regarding the limit behavior of Ω̂:

14



Theorem 4 Under Assumptions 1-4, as T → ∞,

T (akT aTµTk
3/2
T ρTT )

−2Ω̂
w→ Vx

[
Y

ν
+

1

c
1(γ = 0)

]2
(19)

Remark 8 The limit of Ω̂ is non-standard and depends on nuisance parameters. In partic-

ular, the limit involves the volatility function g(·), the localizing parameter c, and the drift

magnitude ν.

Remark 9 The condition bT/k
1/2
T → 0 is stronger than the condition bT/T

1/2 → 0 typically

adopted to establish the consistency of the long-run variance estimator in the standard sta-

tionary framework (e.g., Jansson, 2002). This condition in turn restricts the allowable set

of mildly explosive neighborhoods if a data dependent rule is used to select the bandwidth as

in Andrews (1991). For instance, Andrews (1991) shows that using the Quadratic Spectral

kernel yields an estimated bandwidth of order Op(T
1/5) which, by Assumption 4, rules out

neighborhoods in which kT = O(T 2/5). However, as noted by an anonymous referee, it is

plausible that this condition is not necessary - intuitively, when kT = O(1), the signal of

yt becomes stronger relative to kT = O(Tα) so that Theorem 4 can be expected to hold even

though the condition bT/k
1/2
T → 0 is obviously not satisfied. While relaxing this condition can

potentially be pursued by invoking uniformity results as in Andrews et al. (2020), we believe

a separate, detailed treatment of this issue is required and thus leave it as a possible avenue

for future research.

Remark 10 The analysis in Phillips (2022) can be used to provide guidance on the range

of permissible bandwidths in practice. Allowing for weakly dependent errors, Phillips (2022)

develops a consistent estimator α̂T of α in the MEA framework with kT = Tα (see his

Theorem 3.1). The bandwidth condition bT/k
1/2
T → 0 can then be ensured by requiring that

bT = hTφ with φ chosen such that φ < α̂T/2. Since Tφ−α/2 → 0 if and only if Tφ−α̂T /2 →
0, this provides an upper bound on the permissible bandwidth rate. While the framework

adopted by Phillips (2022) assumes a homoskedastic error structure, we conjecture that his

consistency result for α̂T will continue to hold in the heteroskedastic framework considered

in our article. We are grateful to an anonymous referee for his/her suggestion to include

this discussion.
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Using the preceding results, it is straightforward to show that

(a−1
T akTµTk

3/2
T ρTT )

2Λ̂ = T−1(a−1
T akTµTk

3/2
T ρTT )

2Q−2
T Ω̂

=
[
T (a2kTµ

2
Tk

3
Tρ

2T
T )−1QT

]−2
[
T (akT aTµTk

3/2
T ρTT )

−2Ω̂
]

w→

(
1

2c

[
Y

ν
+

1

c
1(γ = 0)

]2)−2(
Vx

[
Y

ν
+

1

c
1(γ = 0)

]2)

=
4c2Vx[

Y
ν
+ 1

c
1(γ = 0)

]2 (20)

Combining the limit (20) with the limit distribution of ρ̂T in (15), we finally have

thac =
ρ̂T − ρT

Λ̂
1
2

=
(a−1

T akTµTk
3/2
T ρTT )(ρ̂T − ρT )[

(a−1
T akTµTk

3/2
T ρTT )

2Λ̂
] 1

2

w→
2cX/(Y

ν
+ 1

c
1(γ = 0))[

4c2Vx/(
Y
ν
+ 1

c
1(γ = 0))2

] 1
2

=
X

Vx
∼ N(0, 1) (21)

The standard normal limit of thac is formalized in the following theorem:

Theorem 5 Under Assumptions 1-4, as T → ∞, we have thac
w→ N(0, 1).

Remark 11 A pivotal limit of thac is attained since the limit of the standard error esti-

mate, though nuisance parameter-dependent, is proportional to the same random variable

that appears in the limit distribution of the least squares estimate ρ̂T . The cancellation of the

non-pivotal terms in the numerator and denominator of the t-statistic effectuates a pivotal

limiting distribution.

Remark 12 We only require Assumption 3 instead of Assumption 3 ′ to derive the limit of

thac and thus conduct inference on ρT . For inference on the intercept, however, Assumption

3 ′ would be needed as in Xu (2008).

4 Dependent Wild Bootstrap

The previous section established the large sample validity of the HAC-based t-statistic in

the potential presence of nonstationary volatility as well as weak dependence in the noise

component within the MEA framework. In small samples, however, the performance of HAC-

based asymptotic confidence intervals may be less than satisfactory as illustrated via Monte
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Carlo simulations in Section 5. In response to this possibility, we propose an alternative,

bootstrap-based approximation to the finite sample distribution of the t-statistic that can

improve upon the asymptotic approximation provided by the standard normal distribution.

In particular, as the ensuing Monte Carlo comparison demonstrates, the bootstrap-based

interval is shown to achieve improved coverage while controlling average length, relative to

existing asymptotic methods as well as the asymptotic interval (9) based on thac.

The bootstrap procedure we adopt is the so-called dependent wild bootstrap (DWB,

henceforth), introduced by Shao (2010). The DWB is designed to simultaneously capture

unconditional heteroskedasticity and potential temporal dependence in the errors, and thus

is a natural extension of the wild bootstrap developed by Wu (1986) and Liu (1988) for

serially uncorrelated errors. While originally proposed for stationary time series by Shao

(2010), several recent studies have investigated its applicability in the nonstationary time

series setup. For instance, Smeekes and Urbain (2014) study several modified wild bootstrap

methods, including the DWB, in a multivariate framework and prove its asymptotic validity

in testing for unit roots. Rho and Shao (2019) propose the DWB in the unit root testing

context with piecewise locally stationary errors and provide justification for its consistency.

Our paper contributes to the DWB literature by further extending its validity to the MEA

framework allowing for general and flexible forms of variance and dependence structures in

the errors.4

The DWB is based on generating a series of random variables {ηt}Tt=1 that are indepen-

dent of the data in order to capture the heteroskedasticity in the errors. In the original

wild bootstrap (Liu, 1988), the {ηt}Tt=1 are independent while in the DWB, the {ηt}Tt=1 are

correlated to accommodate temporal dependence in the errors. Specifically, we make the

following assumption on {ηt}Tt=1 (Shao, 2010):

Assumption 5: The series {ηt}Tt=1 is drawn independently of the data such that E(ηt) =
0, Var(ηt) = 1, Cov(ηs, ηt) = K( s−t

lT
), where K: R → [0, 1] is a symmetric kernel function

that satisfies K(0) = 1, K(x) = 0 for x ≥ 1, limx→0[1 −K(x)]/|x|q ̸= 0 for some q ∈ (0, 2],

and
∫∞
−∞K(u)e−iuxdu ≥ 0 for x ∈ R. The quantity lT is a bandwidth parameter satisfying

lT = O(T g), 0 < g < 1/3. Assume ηt is lT -dependent and E(η4t ) <∞.

4Weak dependence in the errors can be alternatively captured using a block bootstrap based approach
(e.g., Carlstein, 1986; Kunsch, 1989) or a sieve bootstrap approach (Bühlmann, 1997). Therefore, apart from
the DWB analyzed in this paper, heteroskedasticity-robust versions of certain block and sieve bootstrap
methods may also be viable in the present context. A comparison of alternative bootstrap approaches
within the MEA framework allowing for unconditionally heteroskedastic and weakly dependent errors is a
potentially interesting topic for future research.
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In practice, the series {ηt}Tt=1 can be obtained by drawing samples from a multivariate

normal distribution with zero mean and covariance function Cov(ηs, ηt) = K( s−t
lT

).5 Several

kernels popular in practice such as the Bartlett kernel (with q = 1) and the Parzen and

Tukey-Hanning kernels (with q = 2) satisfy Assumption 5. Alternative choices for the

bandwidth will be explored via simulations in Section 5. In addition to the restriction on the

bandwidth lT as specified in Assumption 5, our theoretical analysis is based on the following

additional assumption which is akin to Assumption 4 in the preceding section:

Assumption 6: The bandwidth lT satisfies k
−1/2
T lT → 0 as T → ∞.

With the OLS residuals ût = yt − µ̂T − ρ̂Tyt−1 at hand, the DWB residuals are simply

constructed as u∗t = ηtût. To analyze the properties of the bootstrap samples, we first derive

the following invariance principle for {u∗t} which parallels that derived in Theorem 1 for the

original errors {ut}:

Theorem 6 Under Assumptions 1-6, as T → ∞,

X∗
T := a−1

T k
−1/2
T

T∑
t=1

ρ̂
−(T−t)−1
T u∗t

w→p X ∼ N(0, Vx)

Y ∗
T := a−1

kT
k
−1/2
T

T∑
t=1

ρ̂−t
T u

∗
t

w→p Y ∼ N(0, Vy) (22)

This theorem reveals that the DWB is able to mimic the unknown heteroskedasticity

and temporal dependence in the errors within the MEA framework, thereby generalizing the

set of time series to which the procedure is applicable. However, it is not fully transferable

from the stationary/unit root case since the additional Assumption 6 plays a crucial role in

ensuring its validity (see Appendix B for details).

We now discuss how to apply the DWB in constructing a bootstrap-based confidence

interval for the autoregressive parameter ρT . The following algorithm enumerates the steps

involved in implementation of the DWB.

Residual-based DWB Algorithm

1. Generate T bootstrap innovations ηt, t = 1, . . . , T from a multivariate normal distri-

bution with zero mean and covariance function Cov(ηs, ηt) = K( s−t
lT

), and construct

5As illustrated in Example 4.1 of Shao (2010), {ηt}Tt=1 can be also be generated from a non-normal
distribution.
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the DWB residuals u∗t = ηtût, where ût = yt − µ̂T − ρ̂Tyt−1, t = 1, . . . , T are the OLS

regression residuals.

2. Construct the bootstrap samples {y∗t , t = 1, . . . , T}, recursively as

y∗t = µ̂T + ρ̂Ty
∗
t−1 + u∗t , t = 1, . . . , T (23)

with y∗0 = y0.

3. Calculate the thac statistic defined in (9) for the bootstrap data as t∗ρ̂T ,hac = (ρ̂∗T −
ρ̂T )/Λ̂

∗ 1
2 , where ρ̂∗T is the bootstrap OLS estimate and Λ̂∗ is the bootstrap analogue of

Λ̂ computed from the estimated bootstrap residuals û∗t = y∗t − µ̂∗
T − ρ̂∗Ty∗t−1. Specifically,

Λ̂∗ = T−1Q∗−2
T Ω̂∗, where Q∗

T = T−1
∑T

t=1 ẏ
∗2
t−1, ẏ

∗
t−1 = y∗t−1 − ȳ∗−1, ȳ

∗
−1 = T−1

∑T
t=1 y

∗
t−1,

and Ω̂∗ is computed as in (8),

Ω̂∗ =
T−1∑

j=−(T−1)

w(j/b∗T )Γ̂
∗(j), Γ̂∗(j) = T−1

T−|j|∑
t=1

ẏ∗t−1û
∗
t ẏ

∗
t−1+|j|û

∗
t+|j| (24)

4. Repeat steps (1)-(3) B times to approximate the the distribution of the original statistic

thac. Obtain the δ/2 and (1− δ/2) quantiles from the empirical distribution of t∗ρ̂T ,hac,

denoted t∗δ/2 and t
∗
1−δ/2, respectively. Construct the equal-tailed 100(1− δ)% bootstrap

confidence interval as (
ρ̂T − Λ̂

1
2 t∗1−δ/2, ρ̂T − Λ̂

1
2 t∗δ/2

)
(25)

Remark 13 The bandwidth parameter b∗T in step 3 is determined in a data dependent way

as bT in the original statistic (9), albeit based on the bootstrap data {y∗t }. It should be noted

that using the same bT as in the original statistic for all bootstrap replications is also a valid

procedure. Nevertheless, the results were found to be qualitatively similar in simulations to

those reported and are available upon request.

Finally, the asymptotic validity of the residual-based DWB is formally established in the

following theorem:

Theorem 7 Under Assumptions 1-2, 3 ′, 4-6, as T → ∞,

t∗ρ̂T ,hac :=
ρ̂∗T − ρ̂T

Λ̂∗ 1
2

w→p N(0, 1) (26)
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Theorem 7 demonstrates that the residual-based DWB is consistent, i.e., the bootstrap t-

statistic has the same first-order limiting distribution as the original test statistic thac. Thus,

the bootstrap statistic achieves (asymptotically) correct size and the associated bootstrap

confidence interval (25) achieves (asymptotically) correct coverage.

Remark 14 The validity of the bootstrap algorithm as stated in Theorem 7 requires the

stronger Assumption 3 ′ instead of Assumption 3 that was sufficient to derive the limit distri-

bution of ρ̂T (Corollaries 1 and 3). The reason is that in constructing the bootstrap samples,

we utilize the estimated deterministic component µ̂T whose consistency requires Assumption

3 ′ (Corollary 2).

5 Monte Carlo Simulations

This section conducts a set of Monte Carlo experiments designed to assess the finite sample

adequacy of the asymptotic approximations developed in the preceding section as well as

provide a numerical comparison of the proposed approach with existing approaches. In

particular, we evaluate the relative efficacy of the different procedures via the coverage rates

and average effective length (i.e., length conditional on covering the true parameter value)

of the resulting confidence intervals. The simulation design is similar to Guo et al. (2019).

The data generating process (DGP) is given by

yt = µT + ρTyt−1 + ut t = 1, ..., T

ρT = 1 +
c

Tα
, c = 0.5, α ∈ {0.5, 0.8}

Two specifications for the drift are considered: (i) µT = 0; (ii) µT = T−α/4. For the noise

component ut, we consider the case with no serial correlation (ut = et) as well as cases with

the following autoregressive (AR) and moving average (MA) structures:

ut = ϕut−1 +
√

1− ϕ2et

ut =
√
1− θ2et + θet−1

The time series for et is generated based on the following specifications that include ho-

moskedastic, conditionally heteroskedastic and unconditionally heteroskedastic cases with

εt
i.i.d.∼ N(0, 1) throughout:

� DGP-0 [constant volatility]: et = σtεt, σt = 1.
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� DGP-1 [single volatility shift]: et = σtεt, σt = 1(t ≤ τ1T )+σ1(t > τ1T ), τ1 = 0.5, σ =

1/3.

� DGP-2 [double volatility shift]: et = σtεt, σt = 1(t ≤ τ1T )+σ1(τ1T < t ≤ τ2T )+1(t >

τ2T ), (τ1, τ2) = (0.3, 0.7), σ = 3.

� DGP-3 [trending volatility]: et = σtεt, σt = 1 + 5t/T .

� DGP-4 [GARCH]: et =
√
htεt, ht = β0+β1ht−1+β2e

2
t−1, (β0, β1, β2) = (0.01, 0.9, 0.09).

� DGP-5,6 [Stochastic Volatility]: et = vt exp(
1
2
(ω0 +

ω1

T 1/2ht)), ht = (1 − c1/T )ht−1 +

εt, h0 = 0, (vt, εt)
i.i.d.∼ N(0,Σvε), Σvε =

1 ω̄

ω̄ 1

. We set ω0 = 0, ω1 = 5, and c1 = 0.

DGP-5 and DGP-6 correspond to the cases with ω̄ = 0 and ω̄ = −0.5, respectively.

DGP-0 is the base case with constant volatility. DGP-1 and DGP-2 exhibit discrete

jumps in volatility while DGP-3 is a case of trending volatility.6 DGP-4 follows a GARCH

specification adopted from Goncalves and Kilian (2004) which is in turn based on Engle and

Ng (1993).7 The stochastic volatility specification for DGP-5,6 is borrowed from Cavaliere

and Taylor (2009). DGP-5 represents a case with no leverage while DGP-6 allows for leverage

via a non-zero correlation between the shocks vt and εt.
8 Note that DGP-6 is ruled out by

Assumption 2 so that the results for this case serve as a check on the robustness of the

various methods to the violation of this assumption.

Three alternative values for the sample size are considered: T ∈ {50, 100, 200}. The

nominal level of the confidence intervals is set at 95%. The results for α = 0.5 are reported

in the main text while those for α = 0.8 are presented in Appendix C. Except for the PM

interval, the estimated regression always includes a constant regardless of whether the true

drift is zero or not. All experiments are based on 10,000 Monte Carlo replications and 399

bootstrap replications.

6The results for DGP-1 with σ = 3 (not reported) are qualitatively similar to those with σ = 1/3 while
the results for DGP-2 with σ = 1/3 (not reported) are qualitatively similar to those with σ = 3. The full
set of results is available upon request.

7Engle and Ng (1993, p.1760) consider two different configurations of parameter values: (i) “medium
persistence”- (β0, β1, β2) = (0.05, 0.9, 0.05) (ii) “high persistence”- (β0, β1, β2) = (0.01, 0.9, 0.09). We only
present results for (ii) since the results for (i) have a similar overall pattern. The latter set of results is
available upon request.

8Cavaliere and Taylor (2009) also considered other parameter values, namely, c1 ∈ {10, 20} and ω1 =
10. For brevity, we do not present these results given that the results reported are fairly representative of
these cases.
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Seven alternative methods for the construction of confidence intervals for ρT are consid-

ered. These include (i) the HAC-based interval based on the statistic (9), denoted “thac”; (ii)

the Phillips and Magdalinos (2007a) interval (5), denoted “PM”;9 (iii): the Guo et al. (2019)

interval based on the t-statistic (6), denoted “GSW”; (iv)-(vi): the dependent wild bootstrap

with bandwidth l, denoted DWBl, l ∈ {3, 5, 10}; (vii) the dependent wild bootstrap with

bandwidth chosen according to the deterministic rule l =
⌊
4.5(T/100)1/4

⌋
, denoted DWBr.

This rule yields bandwidths of 3,4,5 for T = 50, T = 100, T = 200, respectively. Rho and

Shao (2019) propose an alternative rule in the context of unit root testing: l =
⌊
6(T/100)1/4

⌋
.

In our simulations, we found this rule to generate bandwidths that are too large to deliver

confidence intervals with adequate coverage. The Quadratic Spectral kernel is used to con-

struct the HAC long-run variance estimate and, following Andrews (1991), a data dependent

bandwidth rule based on an AR(1) approximating model for each element of the vector ztût is

used (see equation (6.4) of Andrews, 1991). To improve finite sample performance, we employ

prewhitening as suggested by Andrews and Monahan (1992) based on a VAR(1) model for

ztût.
10 The Bartlett kernel is adopted as the kernel function for implementing the dependent

wild bootstrap procedure.

Table 1 presents the empirical coverage rates of the different methods for the case without

drift (µT = 0). Panels A,B,C report the results with serially uncorrelated errors, AR errors

with ϕ = 0.5, and MA errors with θ = 0.5, respectively. Consider first the coverage rates

based on thac. With serially uncorrelated errors, the coverage rates of thac are liberal (i.e.,

less than the nominal level) regardless of whether the errors are heteroskedastic with the

degree of undercoverage being especially severe when the sample size is small. For instance,

when T = 50, the maximum coverage across all DGPs is only 85% while coverage is below

80% for five out of the seven DGPs considered, including the constant volatility case. The

overall pattern of results with AR errors is similar to that in the serially uncorrelated case

although the liberal nature of the confidence intervals is somewhat mitigated in the former

case relative to the latter when T = 50. When errors are of the MA type, the performance

of thac is considerably improved relative to the other two error structures with coverage

exceeding 90% for six of the seven DGPs as long as T ≥ 100. The thac intervals in the MA

9The results for the PM interval are conditioned on those realizations for which ρ̃T > 1 and increasing the
number of Monte Carlo replications till 10,000 estimates satsifying this condition were obtained. Without
conditioning, the method often yields poor (liberal) coverage rates, especially when ρT is close to (but greater
than) unity (e.g., when α = 0.8).

10We found the prewhitened HAC estimator to deliver considerably more accurate coverage rates relative
to its non-prewhitened counterpart. The asymptotic results derived in Sections 3 and 4, however, remain
valid for the pre-whitened estimator as well.
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case are notably conservative in the presence of a single volatility shift (DGP-1).

Turning to the PM interval, we find that with constant volatility, its coverage can be

quite conservative (> 98%) when T ≤ 100 regardless of the serial correlation structure but

moves closer to the nominal level when T = 200. This is not surprising given that the

interval is (asymptotically) justified in this case. When the errors are heteroskedastic, the

performance of PM depends crucially on the specific form of heteroskedasticity. For DGP-

1 and DGP-2 which are characterized by discrete volatility shifts, the interval continues

to be conservative with discernible improvement in coverage observed only for DGP-2 as

the sample size increases. In contrast, in the trending volatility case (DGP-3), coverage is

at most 82% across the three different error structures when T = 200. In fact, coverage

declines by at least nine percentage points as the sample size increases from T = 100 to

T = 200, suggesting the inadequacy of the asymptotic approximation on which the PM

interval is based. A deterioration in performance as the sample size increases is also observed

for DGP 4-6, though to varying degrees.

For the GSW interval, the coverage rates are in excess of 90% in the constant volatility

case for T ≥ 100 and gradually approach the nominal level as the sample size increases,

consistent with the asymptotic validity of the interval in this case. This is, however, no

longer true with time-varying volatility, as exemplified by the results for DGP-1 to DGP-6.

When volatility is subject to discrete shifts, the interval becomes more conservative as the

sample size increases from T = 100 to T = 200. For instance, when T = 200, the coverage

rates for DGP-1/DGP-2 are at least 98%. A similar lack of convergence towards the nominal

level is also observed for DGP 3-6 although in these cases the coverage rates remain notably

liberal (< 90%) regardless of the sample size and the serial correlation structure (except

when T = 200 and errors are of the MA type).

Consider now the coverage rates of the intervals based on the dependent wild bootstrap.

Several features of these results are noteworthy. First, coverage performance varies with

the bandwidth employed with a smaller bandwidth generally leading to intervals with more

accurate coverage. The proposed bandwidth rule exhibits coverage similar to that with the

smallest bandwidth. Second, consistent with Theorem 7, the coverage rates typically improve

as the sample size increases for each of the DGPs considered. Interestingly, this feature is

also observed in the stochastic volatility case with leverage (DGP-6) despite the fact that

this case is not allowed for in the theory. Third, the coverage rates of the bootstrap-based

intervals are considerably less sensitive to the nature of serial correlation and the particular

form of heteroskedasticity relative to the thac and PM intervals. Fourth, the performance
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of the bootstrap-based intervals is particularly impressive when the sample size is small

(T = 50), where the thac and PM intervals often suffer from substantial under/over-coverage.

Table 2 reports the coverage rates when the DGP includes a drift. The performance of

thac in this case generally improves relative to the no drift case by ameliorating the extent of

undercoverage especially when the sample size is small. The PM interval, on the other hand,

is now seen to be severely conservative in most cases with coverage being as high as 100% for

four of the seven volatility specifications considered, including the constant volatility case.

Further, the coverage rates do not necessarily approach the nominal level as the sample size

increases for any of the volatility structures. This feature can be explained by the fact that

when ν ̸= 0 in Assumption 2, the Cauchy limit distribution underlying the PM interval is

no longer valid.11 The coverage rates of the GSW interval remain inadequate when volatility

is time-varying although some improvements may be noted for DGP-3 and DGP-4 in the

serially uncorrelated case. In contrast, the bootstrap-based intervals are much more stable

with coverage rates bearing a very similar pattern to those in the no drift case. In summary,

the coverage results in Tables 1 and 2 make a favorable case for employing the dependent

wild bootstrap based on a small bandwidth or the recommended bandwidth rule compared

to the asymptotic approaches.

Table 3 presents the average effective lengths of the confidence intervals, normalized with

respect to the thac interval. Thus, a ratio smaller (larger) than one indicates an interval

with average effective length shorter (longer) than the thac interval. The results reveal the

following notable patterns. First, the PM interval can be discernibly longer than the other

intervals in cases where the errors have constant conditional variance or involve discrete shifts

in volatility. In contrast, it typically delivers the shortest average length in the trending and

non-deterministic volatility cases (DGPs 3-6) when T = 200. Thus, as with coverage, the

length of the PM interval can be quite sensitive to the underlying volatility specification.

Second, the length of the GSW interval depends to a considerable extent on both the serial

correlation and volatility structures driving the true DGP. For instance, this interval is the

shortest on average relative to the other intervals for DGP 3-6 when T ≤ 100 but always

longer than the interval based on thac for DGP-1 and DGP-2. In the constant volatility case,

the GSW interval is longer than the HAC-based interval with serially uncorrelated errors but

shorter than the same in the serially correlated scenarios. Third, for the bootstrap-based in-

11When ν = ∞, ρ̃T converges to ρT at rate µT k
3/2
T ρTT , which is faster than the rate kT ρ

T
T in Phillips

and Magdalinos (2007a) and ρ̃T is asymptotically normal (see Fei, 2018; Liu and Peng, 2019). When
ν ∈ (0,∞), the limit distribution is mixed normal (see Guo et al., 2019).
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tervals, average length is generally shorter, the larger the bandwidth employed. The average

length based on the bandwidth rule DWBr typically lies between the average lengths for the

smallest and largest bandwidths considered. Fourth, the length improvements offered by the

bandwidth rule over the asymptotic methods are primarily concentrated in situations where

the errors are serially correlated and volatility is subject to discrete shifts. Fifth, the perfor-

mance of the rule-based bandwidth is substantially more stable across the different volatility

specifications relative to the asymptotic procedures, a feature also previously observed for

the coverage rates. Table 4 reports the corresponding length results in the drift case. These

results paint a qualitatively similar overall picture as the results in the no drift case.

In summary, the Monte Carlo results indicate that while employing a relatively smaller

bandwidth leads to more accurate coverage, it also leads to longer average effective lengths.

The recommended bandwidth rule offers a reasonable approach to addressing the coverage-

length trade-off by delivering relatively short intervals while retaining adequate coverage

properties. Additional Monte Carlo results presented in Appendix C for the case α =

0.8 further confirm the effectiveness of the proposed procedure for conducting inference

within the mildly explosive autoregressive framework.

6 Empirical Applications

This section illustrate the proposed methodology on two sets of time series. Section 6.1

revisits the empirical application in GSW where the degree of explosiveness of ten major

stock market indices in the pre-2008 financial exuberance period is studied. In particular,

our analysis accounts for the potential nonstationary volatility pattern in the stock indices

and highlights the difference between our results and those in GSW which are based on

assuming stationary volatility. Section 6.2 investigates the extent of explosive behavior in

three monthly U.S. home price indices during the 2002-2006 housing bubble.

6.1 Stock Market Indices

GSW employ a two-step testing strategy to identify the degree of explosiveness in ten major

stock indices over the period leading up to the 2008 financial crisis. The first step entails

a pretest for detecting whether the time series is explosive and the second step uses their

proposed method to construct a confidence interval if the pretest signals the presence of

explosive behavior. They find limited evidence of explosive behavior with most series either

only mildly explosive, or not explosive at all. To facilitate comparison with their results,
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our analysis employs the same data set as GSW.12 The data are weekly and the sample

size is T = 100 for all series. Specifically, the data are collected in a way that end at the

(pre-selected) highest point in the pre-2008 financial crisis period and then span 100 periods

before that highest point. All of the series peaked at some point during 2007-2008, thereby

making the whole sample approximately span from 2005 to 2008. A plot of the indices is

displayed in Figure 1.
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Figure 1: Plots of ten stock indices during 2005-2008.

We start with an assessment of the time series behavior of volatility in these series to

12The data come from Wind Economic Database and consists of ten countries/districts, namely, USA,
Brazil, China, Hong Kong, Australia, France, Germany, Italy, Egypt and Nigeria, which are representatives
of the world stock markets in different continents: America, Asia-Pacific, Europe and Africa. See Guo et al.
(2019) for further details.
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justify the plausibility of allowing for unconditional heteroskedasticity. Following Cava-

liere and Taylor (2007a), Figure 2 plots the estimated variance profile, defined by V̂P(s) =(∑⌊sT ⌋
t=1 ê

2
t + (sT − ⌊sT ⌋)ê2⌊sT ⌋+1

)
/
∑T

t=1 ê
2
t , 0 ≤ s ≤ 1, as well as the volatility estimates σ̂2

t ,

obtained by fitting a nonparametric regression to the squared residuals ê2t as suggested by

Xu and Phillips (2008)13. Specifically, to adjust for potential serial correlation in the errors,

the residuals êt are obtained by fitting an autoregressive model to the series with lags de-

termined by BIC with a maximum of six lags. For the nonparametric estimates, a Gaussian

kernel is used with the bandwidth chosen by cross validation, searching over bandwidths

hi = ciT
−0.4, i = 1, . . . , 4 with {c1, . . . , c4} = {0.25, 0.4, 0.6, 0.75}. As observed from Fig-

ure 2, the estimated variance profile of several series, especially USA, Brazil, China and

Hong Kong, deviates substantially from the 45◦ line which represents the constant volatility

scenario. The corresponding nonparametric estimates of the volatility clearly depict the un-

derlying nonstationary evolution of the sample volatility paths, indicating smooth trending

changes for USA, Brazil, China and Hong Kong, and possibly single/multiple shifts for the

remaining countries.

In addition to visualizing the sample volatility paths, we also conduct formal diagnos-

tic tests for the stationarity of unconditional volatility proposed by Cavaliere and Taylor

(2007b). They present four test statistics, HKS, HR, HCVM , HAD, and derive their asymp-

totic distributions under the stationarity null from which the relevant critical values of the

tests are obtained. In implementing these tests, the squared residuals ê2t are used in con-

structing the stationary volatility test statistics. A long-run variance estimator based on the

Bartlett kernel with lag truncation parameter 4 is employed.14 Table 5 presents the testing

results along with the 10%, 5% and 1% critical values. It is clear that the first four series,

namely, USA, Brazil, China and Hong Kong, show evidence of significant nonstationary

volatility from a majority of the tests. As noted in the simulation evidence in Cavaliere

and Taylor (2007b), when volatility exhibits trending behavior or a single abrupt break,

HAD and HCVM usually have the highest finite sample power out of the four tests while the

HR test is the least powerful. In contrast, the HR test is the most powerful in the presence of

multiple discrete volatility breaks. Considering these facts together with the visual evidence

presented in Figure 2, we believe a smooth trending variation of the volatility is more likely

to prevail in these four series, as opposed to single/multiple discrete volatility break(s).

13To make the estimated volatility curves comparable across the different time series, we plot the estimated
volatility ratio over t = 1, . . . , T : σ̂2

t /
¯̂σ2, where ¯̂σ2 =

∑T
t=1 σ̂

2
t /T .

14To conserve space, we omit the details pertaining to the construction of the test statistics and refer the
interested reader to Cavaliere and Taylor (2007b).
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Table 5: Nonstationary volatility tests (Cavaliere and Taylor, 2007b) and their critical values
(C.V.) for ten stock indices.

HKS HR HCVM HAD

USA 1.382 1.328∗ 0.541∗∗ 2.965∗∗

Brazil 1.560 1.487∗∗ 0.870∗∗∗ 4.223∗∗∗

China 1.717∗ 1.634∗∗∗ 0.993∗∗∗ 4.744∗∗∗

Hong Kong 1.368 1.368∗∗ 0.728∗∗ 3.753∗∗

Australia 1.024 0.993 0.280 1.582

France 1.264 1.055 0.174 0.890

Germany 0.968 0.747 0.098 0.523

Italy 0.879 0.716 0.108 0.660

Egypt 1.660∗ 0.914 0.190 1.387

Nigeria 1.070 0.941 0.205 1.190

C.V. (10%) 1.620 1.230 0.347 1.933

C.V. (5%) 1.750 1.360 0.461 2.492

C.V. (1%) 2.010 1.630 0.743 3.850

Note: ∗denotes 10%, ∗∗denotes 5%, and ∗∗∗denotes 1% significance level for the above tests.
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Table 6: Explosiveness estimates and p-values of bubble tests allowing for nonstationary
volatility (Harvey et al., 2019, 2020) for ten stock indices.

ρ̂T U supBZ supDF uPSY PSY sPSY

USA 1.003 0.100 0.072 0.293 0.000 0.607 0.000

Brazil 1.001 0.070 0.034 0.210 0.006 0.555 0.006

China 1.025 0.022 0.002 0.022 0.000 0.016 0.000

Hong Kong 1.051 0.004 0.006 0.004 0.000 0.038 0.000

Australia 1.000 0.062 0.052 0.493 0.086 0.497 0.080

France 0.998 0.060 0.054 0.505 0.000 0.766 0.000

Germany 1.012 0.004 0.002 0.054 0.000 0.190 0.000

Italy 0.994 0.112 0.106 0.461 0.000 0.673 0.000

Egypt 1.007 0.012 0.008 0.044 0.010 0.337 0.010

Nigeria 1.002 0.024 0.030 0.014 0.000 0.020 0.000

We now turn to the two-step testing strategy adopted by GSW. Their first step involves

a pretest for explosiveness using the right-tailed augmented Dickey-Fuller (RADF) and the

supremum augmented Dickey-Fuller (SADF) tests proposed by Phillips et al. (2011, PWY

henceforth) and Phillips et al. (2015, PSY henceforth), both of which assume stationary

volatility. In contrast, drawing upon recent developments in the literature, we employ two

set of tests proposed in Harvey et al. (2019, 2020) which allow for nonstationary volatility.

In the first set of tests, Harvey et al. (2019) modify the RADF statistic of PWY using

a weighted least squares-based variant (supBZ) which is borrowed from Boswijk and Zu

(2018). To further increase power, they propose a union of rejections test (U) that combines

the original PWY test statistic (supDF) and supBZ. In the second set of tests, Harvey et

al. (2020) suggest a sign-based version (sPSY) of the PSY test for multiple bubbles and

for the same reason also advocate a union of rejections test (uPSY) which consists of sPSY

and the original PSY test. Following these studies, we present the bootstrap p-values of

these six tests in Table 6. It is evident that both the union tests reject the unit root null

at the 10% significance level for all series except USA and Italy for the U test. As noted by

Harvey et al. (2020), the first set of tests - U , supBZ, and supDF tests, which build on the

PWY testing approach, are usually less powerful than the second set of tests based on the
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PSY testing principle. Interestingly, we also observe a similar phenomenon here: for each

case except Australia, uPSY test has a lower p-value than U . Based on the overall pattern

found in Table 6 and the superior power performance of uPSY test revealed in Harvey et al.

(2020), all of the ten series are deemed to be explosive. However, to construct a meaningful

confidence interval in the second step, we conclude a series to be explosive if and only if

both of the following two conditions are satisfied - the pretest must reject the unit root null

and the point estimate of the degree of explosiveness must exceed unity, i.e., ρ̂T > 1. Taking

into account these conditions, we exclude Australia, France and Italy from the second step

analysis since their estimates ρ̂T ≤ 1 15.

The second step entails constructing HAC-based confidence intervals for the parameter

ρT that governs the degree of explosiveness. To this end, we follow the approach in GSW

of testing over a certain grid of values, H0 : ρ ∈ {1.001, 1.002, . . . , 1.500}. In practice, this

corresponds to constructing a 100(1− δ)% confidence interval [ρ̂L, ρ̂U ] such that

ρ̂L = max{1.001, ρ̂T −D1−δ/2 × σ̂(ρ̂T )}, ρ̂U = ρ̂T −Dδ/2 × σ̂(ρ̂T ) (27)

where Dδ/2, D1−δ/2 represents the δ/2 and 1 − δ/2 percentiles of the approximating distri-

bution D, and σ̂(ρ̂T ) is an estimate of the standard deviation of ρ̂T . In our case, D is either

the standard normal distribution or the DWB distribution and σ̂(ρ̂T ) is the HAC estimate

as defined in (9). Table 7 presents the confidence intervals constructed by the HAC-based

approach as well as the other methods compared in the simulations. Overall, our proposed

DWB approach is supportive of the hypothesis in GSW that most series are mildly explosive

(ρT ∈
[
1.004, 1.04

]
). However, the DWB-based confidence intervals are in general a bit wider

than those of GSW with a larger upper bound for the former, which is consistent with the

preceding simulation evidence that GSW usually under-covers in most of the nonstationary

volatility cases considered. Hence, the GSW interval tends to understate both the sampling

uncertainty associated with the point estimate of ρT as well as the degree of explosiveness

driving the time series. Moreover, for the four series which showed considerable evidence of

time-varying volatility in the foregoing analysis, the difference between the GSW and DWBr

methods is more prominent than for countries such as Germany and Nigeria which do not

show significant time variation in volatility. This pattern suggest that when volatility is not

15It is worth noting that in GSW, the time series for Australia, France and Italy are also categorized as
non-explosive but for a different reason - due to failing to reject their bubble detection tests that do not
allow for nonstationary variance. In contrast, after adjusting for potential nonstationarity in the variance,
the three series show significant evidence of explosive behavior, although the p-values for Australia (0.086)
and Italy (0.112) are the largest in the uPSY and U tests, respectively.
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time-varying, our DWB-based thac method suffers little efficiency loss, further highlighting

the advantages of using our proposed procedure relative to those that do not control for

unconditional heteroskedasticity. Finally, the PM intervals are in general too wide and thus

not particularly informative, again consistent with the simulation evidence that PM intervals

tend to over-cover under nonstationary volatility.

In summary, we find that four out of the seven explosive stock market series analyzed in

GSW show strong evidence of time-varying volatility. For these explosive series, our DWB-

based method produces wider confidence intervals than GSW while the two methods provide

very similar intervals for series that do not exhibit time variation in volatility as indicated by

the tests for stationary volatility. These patterns are consistent with the simulation results

in Section 5 and confirm the effectiveness of our proposed method in constructing confidence

intervals for the degree of explosiveness in time series analysis.

6.2 U.S. Housing Price Indices

The U.S. experienced a sharp increase in home prices between the years 1997 and 2006.

While the increase was larger in some areas and smaller in others, real home prices went

up by about 85% over this period for the country as a whole (Shiller, 2015). Figure 3 plots

three housing price indices - the national home price index, the 20-city composite index,

the 10-city composite index, all of which nearly doubled from 2002 to 2006.16 As Shiller

(2015) notes, there was a “rocket taking off” that eventually crashed in 2006 and caused the

2008 financial crisis, the most severe of its kind since the Great Depression of the 1930s. A

variety of potential explanations has been advanced for this rapid escalation in home prices

including lax lending standards, the Federal Reserve’s low interest rate policy, promotion

in the media, and excessively optimistic investor beliefs from a behavioral perspective (see

Glaeser, 2013; Shiller, 2015; Mian and Sufi, 2015; Griffin, Kruger and Maturana, 2021; and

the references therein). In our study, while not investigating the causes of the house price

boom during 2002-2006, we conduct an econometric analysis aimed at measuring the extent

of explosive behavior in U.S. housing prices to help practitioners and policymakers gauge

16The three indices are the main indices from the well known Case-Shiller Index, which was developed in the
1980s by three economists - Allan Weiss, Karl Case and Robert Shiller. Specifically, the national home price
index records the value of residential housing by tracking the purchase and resale price of single-family homes,
which covers nine major census divisions in the U.S. The 10-city composite index covers Boston, Chicago,
Denver, Las Vegas, Los Angeles, Miami, New York, San Diego, San Francisco, andWashington, D.C.. The 20-
city composite index, further includes Atlanta, Charlotte, Cleveland, Dallas, Detroit, Minneapolis, Phoenix,
Portland, Seattle, and Tampa. The data can be downloaded from the economic research data website of
Federal Reserve Bank of St. Louis, https://fred.stlouisfed.org/release/tables?rid=199&eid=243552.

36



T
ab

le
7:

A
R
(1
)
es
ti
m
at
es

an
d
95
%

co
n
fi
d
en
ce

in
te
rv
al
s
of

va
ri
ou

s
m
et
h
o
d
s
fo
r
te
n
st
o
ck

in
d
ic
es
.

ρ̂
T

t h
a
c

P
M

G
S
W

D
W

B
3

D
W

B
5

D
W

B
1
0

D
W

B
r

U
S
A

1.
00

3
[1
.0
0
1,
1.
03

1]
[1
.0
01

,1
.0
53

]
[1
.0
01

,1
.0
28

]
[1
.0
01

,1
.0
39

]
[1
.0
01

,1
.0
38

]
[1
.0
01

,1
.0
35

]
[1
.0
01

,1
.0
37

]

B
ra
zi
l

1.
00

1
[1
.0
0
1,
1.
02

4]
[1
.0
01

,1
.0
24

]
[1
.0
01

,1
.0
26

]
[1
.0
01

,1
.0
33

]
[1
.0
01

,1
.0
33

]
[1
.0
01

,1
.0
31

]
[1
.0
01

,1
.0
34

]

C
h
in
a

1.
02

5
[1
.0
0
8,
1.
04

2]
[1
.0
01

,1
.0
79

]
[1
.0
11

,1
.0
39

]
[1
.0
07

,1
.0
45

]
[1
.0
08

,1
.0
44

]
[1
.0
12

,1
.0
43

]
[1
.0
10

,1
.0
44

]

H
on

g
K
o
n
g

1.
05

1
[1
.0
2
1,
1.
08

1]
[1
.0
42

,1
.0
60

]
[1
.0
26

,1
.0
76

]
[1
.0
22

,1
.0
88

]
[1
.0
22

,1
.0
92

]
[1
.0
20

,1
.0
93

]
[1
.0
20

,1
.0
90

]

A
u
st
ra
li
a

1.
00

0
-

-
-

-
-

-
-

F
ra
n
ce

0.
99

8
-

-
-

-
-

-
-

G
er
m
a
n
y

1.
01

2
[1
.0
0
1,
1.
03

1]
[1
.0
01

,1
.1
04

]
[1
.0
01

,1
.0
33

]
[1
.0
01

,1
.0
35

]
[1
.0
01

,1
.0
36

]
[1
.0
01

,1
.0
38

]
[1
.0
01

,1
.0
35

]

It
al
y

0.
99

8
-

-
-

-
-

-
-

E
gy

p
t

1.
00

7
[1
.0
0
1,
1.
03

4]
[1
.0
01

,1
.0
94

]
[1
.0
01

,1
.0
30

]
[1
.0
01

,1
.0
41

]
[1
.0
01

,1
.0
40

]
[1
.0
01

,1
.0
34

]
[1
.0
01

,1
.0
39

]

N
ig
er
ia

1.
00

4
[1
.0
0
1,
1.
02

5]
[1
.0
01

,1
.0
68

]
[1
.0
01

,1
.0
23

]
[1
.0
01

,1
.0
27

]
[1
.0
01

,1
.0
24

]
[1
.0
01

,1
.0
23

]
[1
.0
01

,1
.0
26

]

37



the intensity of these dramatic price accelerations. We thus provide a simple yet robust and

effective tool to identify the degree of house price exuberance in the presence of potential

serial correlation and heteroskedasticity, the latter emphasized by Case and Shiller (2003).
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Figure 3: Plots of three U.S. housing price indices and their variance profile, nonparametric
volatility estimates during 2002-2006.

Similar to our foregoing analysis of the stock indices, we collect T = 50 observations

of the three monthly Case-Shiller indices displayed in Figure 3 by first pinning down the

peak point and then gathering data backward until the T -th observation. The peak for the

national index is at March 2006, while the peaks for the 10/20-city composite indices are at

April 2006, which makes the starting month to be February or March 2002.17 The middle

17See Phillips and Yu (2011) and Fabozzi and Xiao (2018) for empirical evidence on the bubble’s timeline.
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and lower panels in Figure 3 present, respectively, the variance profiles and estimated volatil-

ities for the three series after fitting an autoregressive model using the same specifications

as the stock indices in the previous section. These plots reveal considerable instability in

the sample volatility paths for all three indices with a trending volatility specification ap-

pearing to provide a suitable characterization of the nature of the volatility process. Table

8 presents the results from the diagnostic tests for stationary volatility (Panel A) and the

bubble detection tests (Panel B) as described in Section 6.1. The HAD and HCVM tests turn

out to be significant at least at the 10% level for all series, thereby formally corroborating

the nonstationarity of the volatility paths and its type observed in Figure 3. All of the

bubble tests are significant at the 1% level except PSY (although the p-values for PSY are

all below 2%) for each of the three series. Therefore, we move all three series to the second

stage of constructing confidence intervals for the degree of explosiveness. Table 9 present the

results. As with our analysis of the stock indices, GSW provides a tighter interval and PM

provides a much wider interval than our DWB-based method, both of which are consistent

with our earlier discussions on the impact of ignoring possible nonstationarities in the second

moments of the time series.

In conclusion, our analysis shows that the three housing price indices, all of which appear

to possess trending (increasing) volatility, exhibit mildly explosive behavior as opposed to

a severe explosion during the 2002-2006 housing market boom. Existing methods that do

not allow for nonstationary volatility tend to understate/overstate the sampling variability

around the point estimates. More recently, U.S. housing prices have been increasing at a

record pace despite high unemployment during the COVID-19 pandemic, which is believed

to be induced by the Federal Reserve’s unlimited quantitative easing approach in response to

the pandemic. In principle, our method can also be applied to analyze the intensity of this

recent surge in home prices. We leave such an investigation as a potential topic for future

research.

7 Conclusion

The recent upsurge of interest in the mildly explosive autoregressive framework has been

spurred by its ability to provide a simple yet effective tool for modeling the presence of asset

market bubbles. The development of this framework has been followed by a plethora of the-

oretical and empirical studies that have sought to generalize the original framework or apply

it to study the time series evolution of several price indices that may potentially be sub-

ject to explosive behavior. This paper considers the problem of constructing asymptotically
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Table 8: Nonstationary volatility tests (Cavaliere and Taylor, 2007b) and bubble tests (Har-
vey et al. 2019, 2020) results for U.S. housing price series.

Panel A: Tests for stationary volatility.

National 20-City Composite 10-City Composite

HKS 1.177 1.093 1.314

HR 1.101 1.010 1.294∗

HCVM 0.478∗∗ 0.424∗ 0.567∗∗

HAD 2.165∗ 2.620∗∗ 2.822∗∗

Panel B: Explosiveness estimates and p-values from bubble tests.

National 20-City Composite 10-City Composite

ρ̂T 1.012 1.009 1.005

U 0.002 0.000 0.000

supBZ 0.000 0.000 0.000

supDF 0.002 0.000 0.002

uPSY 0.000 0.002 0.002

PSY 0.018 0.010 0.016

sPSY 0.000 0.000 0.000

Note: ∗denotes 10%, ∗∗denotes 5%, and ∗∗∗denotes 1% significance level for the above tests.

Table 9: AR(1) estimates and 95% confidence intervals of various methods for U.S. housing
price series.

National 20-City Composite 10-City Composite

ρ̂T 1.012 1.009 1.005

thac [1.001,1.038] [1.001,1.029] [1.001,1.032]

PM [1.001,1.184] [1.001,1.151] [1.001,1.108]

GSW [1.001,1.027] [1.001,1.025] [1.001,1.024]

DWB3 [1.001,1.042] [1.001,1.026] [1.001,1.027]

DWB5 [1.001,1.040] [1.001,1.023] [1.001,1.026]

DWB10 [1.001,1.044] [1.001,1.023] [1.001,1.026]

DWBr [1.001,1.043] [1.001,1.026] [1.001,1.032]
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justified confidence intervals for the autoregressive parameter that represents the degree of

explosiveness. Existing approaches typically employed in empirical practice are valid only

under the assumption of conditional homoskedasticity/heteroskedasticity, notwithstanding

extensive empirical evidence against the same for a wide range of important economic and

financial time series. Our framework allows the noise component to be unconditionally het-

eroskedastic and sufficiently general to subsume a variety of volatility specifications common

in the literature. We propose a dependent wild bootstrap-t procedure for inference that

is shown to provide an improved approximation to the finite sample distribution of the t-

statistic relative to asymptotic methods. Given that the t-statistic is asymptotically pivotal,

it is possible that the bootstrap offers asymptotic refinements (Hall, 1992). A theoretical

investigation of this possibility is outside the scope of the present paper but a potentially

fruitful avenue for future research.
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Supplementary Appendix A: Technical Lemmas

This Appendix contains a set of technical lemmas that will be subsequently used in the
proofs of the main results in Appendix B. As a matter of notation, we will use C = C[0, 1] to
denote the space of continuous functions on [0, 1] and D the space of right continuous with
left limit processes on [0, 1], ‘

p→’ to denote convergence in probability, ‘
w→’ to denote weak

convergence in the space D endowed with the Skorohod metric, ⌊.⌋ to denote the integer
part of its argument, and 1(·) to denote the indicator function. For a random quantity δ,
we write δ = δ0 + op(δ0) as δ = δ0 + s.o., where s.o. represents a term of smaller order in
probability. Further, we define Ẏ = Y

ν
+ 1

c
1(γ = 0).

Lemma A.1 For any real numbers a1, a2, a3 that satisfy 0 < a1 < ∞, −∞ < a2, a3 < ∞,

a1 ≥ a2, we have limT→∞ k−1
T

T−|j|∑
t=1

ρ
−a1(T−t)+a2|j|+a3
T < ∞ holds uniformly in j = 1, . . . , T .

Lemma A.2 [Guo et al., 2019] Under Assumptions 1-2, the following limiting results hold
jointly:

(a) (akT k
3/2
T ρTT )

−1
T∑
t=1

T∑
j=t

ρt−1−j
T uj = op(1);

(b) (akT k
3/2
T ρ2TT )−1

T∑
t=1

T∑
j=t

ρ
2(t−1)−j
T uj = op(1);

(c) (a2kT kTρ
T
T )

−1
T∑
t=1

T∑
j=t

ρt−1−j
T ujut = op(1);

(d) (akT kTρ
T
T )

−2
T∑
t=1

d2t−1 = Y 2
T /2c+ op(1);

(e) (akT k
3/2
T ρTT )

−1
T∑
t=1

dt−1 = YT/c+ op(1);

(f) (akT aTkTρ
T
T )

−1
T∑
t=1

dt−1ut = XTYT + op(1).

Lemma A.3 Under Assumptions 1-2, the following limit results hold uniformly in j:

(a) (a2kTµTk
3/2
T ρTT )

−2
T−|j|∑
t=1

[
utut+|j|

{ t−1∑
i1=1

ρt−1−i1
T ui1

}{ T∑
i2=t+|j|

ρ
t+|j|−1−i2
T ui2

}]
= op(k

−1
T );

(b) (a2kTµTk
3/2
T ρTT )

−2
T−|j|∑
t=1

[
utut+|j|

{ T∑
i1=t

ρt−1−i1
T ui1

}{ t+|j|−1∑
i2=1

ρ
t+|j|−1−i2
T ui2

}]
= op(k

−1
T );

(c) (a2kTµTk
3/2
T ρTT )

−2
T−|j|∑
t=1

[
utut+|j|

{ T∑
i1=t

ρt−1−i1
T ui1

}{ T∑
i2=t+|j|

ρ
t+|j|−1−i2
T ui2

}]
= op(k

−1
T ).

Lemma A.4 Under Assumptions 1-3, the following limit results hold uniformly in j:

(a)
T−|j|∑
t=1

y2t−1y
2
t+|j|−1 = Op(a

4
kT
µ4
Tk

5
Tρ

4T
T ),
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(b)
T−|j|∑
t=1

y2t−1yt+|j|−1 = Op(a
3
kT
µ3
Tk

4
Tρ

3T
T ),

T−|j|∑
t=1

yt−1y
2
t+|j|−1 = Op(a

3
kT
µ3
Tk

4
Tρ

3T
T ),

(c)
T−|j|∑
t=1

yt−1yt+|j|−1 = Op(a
2
kT
µ2
Tk

3
Tρ

2T
T ),

T−|j|∑
t=1

y2t−1 = Op(a
2
kT
µ2
Tk

3
Tρ

2T
T ),

T−|j|∑
t=1

y2t+|j|−1 = Op(a
2
kT
µ2
Tk

3
Tρ

2T
T ).

Lemma A.5 Under Assumptions 1-3, the following limit results hold uniformly in j:
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T−|j|∑
t=1

yt−1y
2
t+|j|−1ut = Op(a
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kT
aTµ
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T ρ3TT ),

T−|j|∑
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T−|j|∑
t=1

y2t+|j|−1ut = Op(a
2
kT
aTµ

2
Tk

5/2
T ρ2TT ),

T−|j|∑
t=1

y2t−1ut+|j| = Op(a
2
kT
aTµ

2
Tk

5/2
T ρ2TT ),

(c)
T−|j|∑
t=1

yt−1ut = Op(akT aTµTk
3/2
T ρTT ),

T−|j|∑
t=1

yt−1ut+|j| = Op(akT aTµTk
3/2
T ρTT ),

T−|j|∑
t=1

yt+|j|−1ut = Op(akT aTµTk
3/2
T ρTT ),

T−|j|∑
t=1

yt+|j|−1ut+|j| = Op(akT aTµTk
3/2
T ρTT ).

Lemma A.6 Under Assumptions 1-3, the following limit results hold uniformly in j:

(a) ρ̂
−2(T−t)+|j|−2
T = ρ

−2(T−t)+|j|−2
T + op(1), t = 1, ..., T − |j|.

(b)
T−|j|∑
t=1

ρ̂
−2(T−t)+|j|−2
T yt−1yt+|j|−1 = Op(a

2
kT
µ2
Tk

3
Tρ

2T
T ),

(c)
T−|j|∑
t=1

ρ̂
−2(T−t)+|j|−2
T yt−1 = Op(akTµTk

2
Tρ

T
T ),

T−|j|∑
t=1

ρ̂
−2(T−t)+|j|−2
T yt+|j|−1 = Op(akTµTk

2
Tρ

T
T ),

(d)
T−|j|∑
t=1

ρ̂
−2(T−t)+|j|−2
T yt−1ut+|j| = Op(akT aTµTk

3/2
T ρTT ),

T−|j|∑
t=1

ρ̂
−2(T−t)+|j|−2
T yt+|j|−1ut = Op(akT aTµTk

3/2
T ρTT ),

(e)
T−|j|∑
t=1

ρ̂
−2(T−t)+|j|−2
T ut = Op(aTk

1/2
T ),

T−|j|∑
t=1

ρ̂
−2(T−t)+|j|−2
T ut+|j| = Op(aTk

1/2
T ),

Lemma A.7 Under Assumptions 1-3,
T∑
t=1

ytσ
2
t = Op(akT a

2
TµTk

2
Tρ

T
T ).
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Proof of Lemma A.1: We have

k−1
T

T−|j|∑
t=1

ρ
−a1(T−t)+a2|j|+a3
T =

∣∣∣∣∣∣k−1
T

T−|j|∑
t=1

ρ
−a1(T−t)+a2|j|+a3
T

∣∣∣∣∣∣
= k−1

T

∣∣∣ρ−(a1−a2)|j|+a3−a1
T − ρ

−a1(T−1)+a2|j|+a3
T

∣∣∣
ρa1T − 1

=

∣∣∣ρ−(a1−a2)|j|+a3−a1
T − ρ

−a1(T−|j|)−(a1−a2)|j|+a1+a3
T

∣∣∣
a1c+O(k−1

T )

≤

∣∣∣ρ−(a1−a2)|j|+a3−a1
T

∣∣∣+ ∣∣∣ρ−a1(T−|j|)−(a1−a2)|j|+a1+a3
T

∣∣∣
a1c+O(k−1

T )
(A.1)

Taking the limit on both sides of (A.1), we have

lim
T→∞

k−1
T

T−|j|∑
t=1

ρ
−a1(T−t)+a2|j|+a3
T ≤ lim

T→∞

∣∣∣ρ−(a1−a2)|j|+a3−a1
T

∣∣∣+ ∣∣∣ρ−a1(T−|j|)−(a1−a2)|j|+a1+a3
T

∣∣∣
a1c+O(k−1

T )

≤ lim
T→∞

∣∣∣ρa3−a1
T

∣∣∣+ ∣∣∣ρa1+a3
T

∣∣∣
a1c+O(k−1

T )
=

2

a1c
< ∞. ■ (A.2)

Proof of Lemma A.2: The proofs are essentially the same as Lemmas A.4-A.5 in Guo et
al. (2019), with additional scaling factors akT of certain order, either a−1

kT
or a−2

kT
, added to

ensure that the variance of et is well-behaved. We omit the proofs here but they are available
upon request. ■

Proof of Lemma A.3: (a). Note that

E

∣∣∣∣∣∣kT (a2kTµTk
3/2
T ρTT )

−2

T−|j|∑
t=1

[
utut+|j|

{ t−1∑
i1=1

ρt−1−i1
T ui1

}{ T∑
i2=t+|j|

ρ
t+|j|−1−i2
T ui2

}]∣∣∣∣∣∣
≤ kT (µTk

3/2
T ρTT )

−2

T−|j|∑
t=1

[{ t−1∑
i1=1

ρt−1−i1
T

}{ T∑
i2=t+|j|

ρ
t+|j|−1−i2
T

}
E
∣∣a−4

kT
utut+|j|ui1ui2

∣∣ ]

≤ kT (µTk
3/2
T ρTT )

−2

T−|j|∑
t=1

[{ t−1∑
i1=1

ρt−1−i1
T

}{ T∑
i2=t+|j|

ρ
t+|j|−1−i2
T

}]
×{E(a−1

kT
ut)

4}1/4{E(a−1
kT
ut+|j|)

4}1/4{E(a−1
kT
ui1)

4}1/4{E(a−1
kT
ui2)

4}1/4

≤ kT (µTk
1/2
T )−2ρ−2T

T k−2
T

(
(ρ

T−|j|
T − ρ

|j|−T
T )ρT

(ρT − 1)3(ρT + 1)
− T − |j|

(ρT − 1)2

)
× (

∞∑
j=0

|cj|)4K4/(4+κ2)
2 K

4/(4+κ1)
1

= ν−2ρ−2T
T k−1

T

(
O(k3

Tρ
T
T ) +O(k2

TT )
)
×O(1)×K

4/(4+κ2)
2 K

4/(4+κ1)
1 = O(k2

Tρ
−T
T ) = o(1)(A.3)
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which holds uniformly in j, where the second inequality holds due to the Cauchy-Schwarz
inequality and the third inequality holds if suptE[(a−1

kT
ut)

4] is bounded. This is indeed true
as (see, Tanaka, 1996, pp. 501-502)

|a−1
kT
ut| = |

∞∑
j=0

cja
−1
kT
σt+|j|εt+|j|| ≤

∞∑
j=0

|cj|3/4a−1
kT
σt+|j|(|cj||εt+|j||4)1/4

≤ supt(a
−1
kT
σt)× (

∞∑
j=0

|cj|)3/4(
∞∑
j=0

|cj||εt+|j||4)1/4 (A.4)

so that

suptE(a−1
kT
ut)

4 ≤ suptE(a−1
kT
σt)

4 × (
∞∑
j=0

|cj|)4 × suptE(ε4t )

≤ (
∞∑
j=0

|cj|)4K4/(4+κ2)
2 K

4/(4+κ1)
1 ≤ (|c0|+

∞∑
j=0

j|cj|)4K4/(4+κ2)
2 K

4/(4+κ1)
1 < ∞ (A.5)

Finally, the o(1) result in (A.3) follows since k2
Tρ

−T
T = T 2αρ−T

T = o(1), where 0 < α <
1 (Assumption 1). Then part (a) follows as we have shown its convergence in L1, which
implies convergence in probability. The proofs for (b) and (c) follow very similar steps as
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the proof for (a) and are hence omitted, but available upon request. ■

Proof of Lemma A.4: (a). Since yt = y0ρ
t
T +

∑t
i=1 ρ

t−i
T ui + µT (ρ

t
T − 1)kT/c, we have

(a4kTµ
4
Tk

5
Tρ

4T
T )−1

T−|j|∑
t=1

y2t−1y
2
t+|j|−1

= (a4kTµ
4
Tk

5
Tρ

4T
T )−1

T−|j|∑
t=1

[(
y0ρ

t−1
T +

t−1∑
i=1

ρt−1−i
T ui + µT (ρ

t−1
T − 1)kT/c

)2
×
(
y0ρ

t+|j|−1
T +

t+|j|−1∑
i=1

ρ
t+|j|−1−i
T ui + µT (ρ

t+|j|−1
T − 1)kT/c

)2]
(A.6)

= (a4kTµ
4
Tk

5
Tρ

4T
T )−1

T−|j|∑
t=1

[(
y0ρ

t−1
T +

T∑
i=1

ρt−1−i
T ui + µT (ρ

t−1
T − 1)kT/c

)2
×
(
y0ρ

t+|j|−1
T +

T∑
i=1

ρ
t+|j|−1−i
T ui + µT (ρ

t+|j|−1
T − 1)kT/c

)2]
+ s.o. (A.7)

= (a4kTµ
4
Tk

5
Tρ

4T
T )−1

T−|j|∑
t=1

ρ
2(t−1)
T ρ

2(t+|j|−1)
T

( T∑
i=1

ρ−i
T ui + µTkT/c

)4
+ s.o.

= (µ4
Tk

2
T )

−1
(
k−1
T

T−|j|∑
t=1

ρ
−2[T−(t−1)]
T ρ

−2[T−(t+|j|−1)]
T

)
︸ ︷︷ ︸

=O(1), by Lemma A.1

(
a−1
kT
k
−1/2
T

T∑
i=1

ρ−i
T ui + a−1

kT
c−1ν

)4
+ s.o.

w→ ν−5 ×O(1)× Ẏ 4 + op(1) = Op(1) (A.8)

where the approximation from (A.6) to (A.7) can be easily proved in a similar manner to
(A.3) in Lemma A.3. This proves (a).

(b). Similar to (a), with some algebra, we have both (a3kTµ
3
Tk

4
Tρ

3T
T )−1

∑T−|j|
t=1 y2t−1yt+|j|−1 and

(a3kTµ
3
Tk

4
Tρ

3T
T )−1

∑T−|j|
t=1 yt−1y

2
t+|j|−1

w→ ν−4 ×O(1)× Ẏ 3 + op(1) = Op(1).

(c). Similar to (a) and (b), with some algebra, we have (a2kTµ
2
Tk

3
Tρ

2T
T )−1

∑T−|j|
t=1 yt−1yt+|j|−1,

(a2kTµ
2
Tk

3
Tρ

2T
T )−1

∑T−|j|
t=1 y2t−1 and (a2kTµ

2
Tk

3
Tρ

2T
T )−1

∑T−|j|
t=1 y2t+|j|−1

w→ ν−3×O(1)× Ẏ 2+op(1) =

A-5



Op(1). ■

Proof of Lemma A.5: (a). The first result is calculated by

(a3kT aTµ
3
Tk

7/2
T ρ3TT )−1

T−|j|∑
t=1

yt−1y
2
t+|j|−1ut

= (a3kT aTµ
4
Tk

5
Tρ

4T
T )−1

T−|j|∑
t=1

[(
y0ρ

t−1
T +

t∑
i=1

ρt−1−i
T ui + µT (ρ

t−1
T − 1)kT/c

)
×
(
y0ρ

t+|j|−1
T +

t+|j|−1∑
i=1

ρ
t+|j|−1−i
T ui + µT (ρ

t+|j|−1
T − 1)kT/c

)2
ut

]

= (a3kT aTµ
3
Tk

7/2
T ρ3TT )−1

T−|j|∑
t=1

[(
y0ρ

t−1
T +

T∑
i=1

ρt−1−i
T ui + µT (ρ

t−1
T − 1)kT/c

)
×
(
y0ρ

t+|j|−1
T +

T∑
i=1

ρ
t+|j|−1−i
T ui + µT (ρ

t+|j|−1
T − 1)kT/c

)2
ut

]
+ s.o.

= (a3kT aTµ
3
Tk

7/2
T ρ3TT )−1

T−|j|∑
t=1

ρ
2(t+|j|−1)
T ρt−1

T ut

( T∑
i=1

ρ−i
T ui + µTkT/c

)3
+ s.o.

= (µ3
Tk

3/2
T )−1

(
a−1
T k

−1/2
T

T−|j|∑
t=1

ρ
−2[T−(t+|j|−1)]
T ρ

−[T−(t−1)]
T ut

)
︸ ︷︷ ︸

=Op(1)

(
a−1
kT
k
−1/2
T

T∑
i=1

ρ−i
T ui + a−1

kT
c−1ν

)3
+ s.o.

w→ ν−4 ×Op(1)× Ẏ 3 + op(1) = Op(1) (A.9)

where
(
a−1
T k

−1/2
T

∑T−|j|
t=1 ρ

−2[T−(t+|j|−1)]
T ρ

−[T−(t−1)]
T ut

)
= Op(1) is due to

E

a−1
T k

−1/2
T

T−|j|∑
t=1

ρ
−2[T−(t+|j|−1)]
T ρ

−[T−(t−1)]
T ut

2

≤ C(1)2
(
k−1
T

T−|j|∑
t=1

ρ
−4[T−(t+|j|−1)]
T ρ

−2[T−(t−1)]
T

)
︸ ︷︷ ︸

=O(1), by Lemma A.1

×{suptE(a−1
T et)

4}1/2 + s.o.

= C(1)2 ×O(1)×O(1) = O(1) (A.10)

which uses the result that suptE[(a−1
T et)

4] ≤ suptE[ε4t ]suptE[(a−1
T σt)

4] < ∞. The second

result is similar, i.e., (a3kT aTµ
3
Tk

7/2
T ρ3TT )−1

∑T−|j|
t=1 y2t−1yt+|j|−1ut+|j|−1 =
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(µ3
Tk

3/2
T )−1

(
a−1
T k

−1/2
T

T−|j|∑
t=1

ρ
−[T−(t+|j|−1)]
T ρ

−2[T−(t−1)]
T ut+|j|−1

)
︸ ︷︷ ︸

=Op(1)

(
a−1
kT
k
−1/2
T

∑T
i=1 ρ

−i
T ui+a−1

kT
c−1ν

)3
+

s.o.
w→ ν−4 ×Op(1)× Ẏ 3 + op(1) = Op(1).

(b). Similar to (a), with some algebra, we have (a2kT aTµ
2
Tk

5/2
T ρ2TT )−1

∑T−|j|
t=1 yt−1yt+|j|−1ut,

(a2kT aTµ
2
Tk

5/2
T ρ2TT )−1

∑T−|j|
t=1 yt−1yt+|j|−1ut+|j|−1, (a

2
kT
aTµ

2
Tk

5/2
T ρ2TT )−1

∑T−|j|
t=1 y2t+|j|−1ut and

(a2kT aTµ
2
Tk

5/2
T ρ2TT )−1

∑T−|j|
t=1 y2t−1ut+|j|−1

w→ ν−3 ×Op(1)× Ẏ 2 + op(1) = Op(1).

(c). For a given j, we have

(akT aTµTk
3/2
T ρTT )

−1

T−|j|∑
t=1

yt−1ut

= (akT aTµTk
3/2
T ρTT )

−1

T−|j|∑
t=1

(
y0ρ

t−1
T +

t∑
i=1

ρt−1−i
T ui + µT (ρ

t−1
T − 1)kT/c

)
ut

= (akT aTµTk
3/2
T ρTT )

−1

T−|j|∑
t=1

(
y0ρ

t−1
T +

T∑
i=1

ρt−1−i
T ui + µT (ρ

t−1
T − 1)kT/c

)
ut + s.o.

= (akT aTµTk
3/2
T ρTT )

−1

T−|j|∑
t=1

ρt−1
T ut

( T∑
i=1

ρ−i
T ui + µTkT/c

)
+ s.o.

= (µTk
1/2
T )−1

(
a−1
T k

−1/2
T

T−|j|∑
t=1

ρ
−[T−(t−1)]
T ut

)
︸ ︷︷ ︸

=Op(1)

(
a−1
kT
k
−1/2
T

T∑
i=1

ρ−i
T ui + a−1

kT
c−1ν

)
+ s.o.

w→ ν−2 ×Op(1)× Ẏ + op(1) = Op(1) (A.11)

where a−1
T k

−1/2
T

∑T−|j|
t=1 ρ

−[T−(t−1)]
T ut = Op(1) can be easily proved in a similar manner to

(A.10). Using the same approach, it is easy to check that the rest of the three cases (b), (c)
and (d) are of the stated orders. ■

Proof of Lemma A.6: Using the fact that ρ̂T = ρT +Op(a
−1
kT
aT (µTk

3/2
T ρTT )

−1), a first order
Taylor expansion yields

ρ̂
−2(T−t)+|j|−2
T − ρ

−2(T−t)+|j|−2
T = (ρ̂T − ρT )× (−2(T − t) + |j| − 2)︸ ︷︷ ︸

O(T ) or smaller

ρ
−2(T−t)+|j|−3
T︸ ︷︷ ︸

<∞

+s.o.

= Op(a
−1
kT
aT (µTk

3/2
T ρTT )

−1)×O(T )×O(1) + s.o.

= ν−1Op(a
−1
kT
aTTk

−1
T ρ−T

T ) + s.o. = op(1) (A.12)

For the remaining results (b)-(e), we only prove (b) as the rest of the cases can be proved
in a similar manner to this case and cases in previous Lemmas A.4-A.5. We first show the
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results hold if ρ̂T is replaced with ρT :

(a2kTµ
2
Tk

3
Tρ

2T
T )−1

T−|j|∑
t=1

ρ
−2(T−t)+|j|−2
T yt−1yt+|j|−1

= (a2kTµ
2
Tk

3
Tρ

2T
T )−1

T−|j|∑
t=1

[
ρ
−2(T−t)+|j|−2
T

(
y0ρ

t−1
T +

t∑
i=1

ρt−1−i
T ui + µT (ρ

t−1
T − 1)kT/c

)
×
(
y0ρ

t+|j|−1
T +

t+|j|−1∑
i=1

ρt−1−i
T ui + µT (ρ

t+|j|−1
T − 1)kT/c

)]

= (a2kTµ
2
Tk

3
Tρ

2T
T )−1

T−|j|∑
t=1

[
ρ
−2(T−t)+|j|−2
T

(
y0ρ

t−1
T +

T∑
i=1

ρt−1−i
T ui + µT (ρ

t−1
T − 1)kT/c

)
×
(
y0ρ

t+|j|−1
T +

T∑
i=1

ρt−1−i
T ui + µT (ρ

t+|j|−1
T − 1)kT/c

)]
+ s.o.

= (a2kTµ
2
Tk

3
Tρ

2T
T )−1

T−|j|∑
t=1

ρ
(t+|j|−1)
T ρt−1

T ρ
−2(T−t)+|j|−2
T

( T∑
i=1

ρ−i
T ui + µTkT/c

)2
+ s.o.

= (µ2
TkT )

−1
(
k−1
T

T−|j|∑
t=1

ρ
−[T−(t+|j|−1)]
T ρ

−[T−(t−1)]
T ρ

−2(T−t)+|j|−2
T

)
︸ ︷︷ ︸

=O(1), by Lemma A.1

(
a−1
kT
k
−1/2
T

T∑
i=1

ρ−i
T ui + a−1

kT
c−1ν

)2
+ s.o.

w→ ν−3 ×O(1)× Ẏ 2 + op(1) = Op(1) (A.13)

Next, using the results in (a), we have

(a2kTµ
2
Tk

3
Tρ

2T
T )−1

T−|j|∑
t=1

ρ̂
−2(T−t)+|j|−2
T yt−1yt+|j|−1

= (a2kTµ
2
Tk

3
Tρ

2T
T )−1

T−|j|∑
t=1

ρ
−2(T−t)+|j|−2
T yt−1yt+|j|−1 + (a2kTµ

2
Tk

3
Tρ

2T
T )−1

T−|j|∑
t=1

yt−1yt+|j|−1︸ ︷︷ ︸
=Op(1), by Lemma A.4(c)

×op(1)

= Op(1). ■ (A.14)
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Proof of Lemma A.7: Since yt−1 = y0ρ
t−1
T +

∑t−1
i=1 ρ

t−1−i
T ui + µT (ρ

t−1
T − 1)kT/c, we have

(akT a
2
TµTk

2
Tρ

T
T )

−1

T∑
t=1

yt−1σ
2
t

= (akT a
2
TµTk

2
Tρ

T
T )

−1

T∑
t=1

(
y0ρ

t−1
T +

t−1∑
i=1

ρt−1−i
T ui + µT (ρ

t−1
T − 1)kT/c

)
σ2
t

= (akT a
2
TµTk

2
Tρ

T
T )

−1

T∑
t=1

( T∑
i=1

ρt−1−i
T ui

)
σ2
t +

T∑
t=1

µTρ
t−1
T kTσ

2
t /c+ s.o.

= (µTk
1/2
T )−1

(
a−1
kT
k
−1/2
T

T∑
i=1

ρ−i
T ui

)(
a−2
T k−1

T

T∑
t=1

ρ
−(T−t)−1
T σ2

t

)
+ (akT c)

−1a−2
T k−1

T

T∑
t=1

ρ
−(T−t)−1
T σ2

t + s.o.

w→ Ẏ ×
∫ ∞

0

e−crg(1)2dr =
g(1)2Ẏ

c
. ■ (A.15)
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Supplementary Appendix B: Proofs of Main Results

This appendix contains proofs of the main results in the paper. Let P ∗ denote the
bootstrap probability measure and E∗ the expectation with respect to P ∗. We will use
C = C[0, 1] to denote the space of continuous functions on [0, 1] and D the space of right
continuous with left limit processes on [0, 1], ‘

p→’ to denote convergence in probability, ‘
w→’

to denote weak convergence in the spaceD endowed with the Skorohod metric, ‘
w→p’ to denote

weak convergence in probability under the bootstrap measure (Giné and Zinn, 1990), ⌊.⌋ to
denote the integer part of its argument, and 1(·) to denote the indicator function. We will
write Z∗

T = op∗(1) if, for any ϵ1 > 0, ϵ2 > 0, limT→∞ P [P ∗(|Z∗
T | > ϵ1) > ϵ2] = 0. Similarly, we

write Z∗
T = Op∗(1) if, for all ϵ > 0, there exists an Mϵ < ∞ such that limT→∞ P [P ∗(|Z∗

T | >
Mϵ) > ϵ] = 0. Finally, for a random quantity δ, we write δ = δ0 + op(δ0) as δ = δ0 + s.o.,
where s.o. represents a term of smaller order in probability.

Proof of Theorem 1: Let X̃T = a−1
T k

−1/2
T

T∑
t=1

ρ
−(T−t)−1
T et. We first show that XT =

C(1)X̃T + op(1). Under Assumption 2, the standard Beveridge-Nelson decomposition (see,
e.g., Phillips and Solo, 1992) states that

ut = C(1)et + ẽt−1 − ẽt (B.1)

where ẽt = C̃(L)et =
∞∑
j=0

c̃jet−|j|, c̃j =
∞∑

k=j+1

ck. Furthermore, the assumption
∞∑
j=0

j|cj| < ∞

ensures
∞∑
j=0

c̃2j < ∞, which implies E(a−2
T ẽ2t ) ≤

∞∑
j=0

c̃2jsuptE(a−2
T σ2

t )suptE(ε2t ) ≤ K
2/(4+κ2)
2 K

2/(4+κ1)
1

∞∑
j=0

c̃2j <

∞, ∀t. We first prove the result for XT . We have

XT = a−1
T k

−1/2
T

T∑
t=1

ρ
−(T−t)−1
T ut

= a−1
T k

−1/2
T

T∑
t=1

ρ
−(T−t)−1
T C(1)et + a−1

T k
−1/2
T

T∑
t=1

ρ
−(T−t)−1
T (ẽt−1 − ẽt)

= C(1)X̃T + a−1
T k

−1/2
T

T∑
t=1

ρ
−(T−t)−1
T (ẽt−1 − ẽt) (B.2)

where we need to show that the second term a−1
T k

−1/2
T

∑T
t=1 ρ

−(T−t)−1
T (ẽt−1 − ẽt) is op(1).
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Following standard calculations,

a−1
T

T∑
t=1

ρ
−(T−t)−1
T (ẽt−1 − ẽt) = a−1

T

T∑
t=1

ρ
−(T−t)−1
T ẽt−1 − a−1

T

T∑
t=1

ρ
−(T−t)−1
T ẽt

= a−1
T

T−1∑
t=0

ρ
−(T−t)
T ẽt − a−1

T

T∑
t=1

ρ
−(T−t)−1
T ẽt

= a−1
T ρ−T

T ẽ0 − a−1
T ρ−1

T ẽT + a−1
T

T−1∑
t=1

(ρ
−(T−t)
T − ρ

−(T−t)−1
T )ẽt

= a−1
T ρ−T

T ẽ0 − a−1
T ρ−1

T ẽT + ca−1
T k−1

T

T−1∑
t=1

ρ
−(T−t)−1
T ẽt (B.3)

Since E(a−2
T ẽ2t ) < ∞, ∀t, we have k

−1/2
T a−1

T ρ−T
T ẽ0 = op(1) and k

−1/2
T a−1

T ρ−1
T ẽT = op(1). Fur-

ther,

E

[
(ca−1

T k−1
T

T−1∑
t=1

ρ
−(T−t)−1
T ẽt)

2

]
= c2k−2

T

T−1∑
t=1

T−1∑
s=1

(
ρ
−(T−t)−1
T ρ

−(T−s)−1
T E(a−2

T ẽtẽs)
)

≤ c2k−2
T O

(
(
T−1∑
t=1

ρ
−(T−t)−1
T )2

)
×O(1)

= c2k−2
T O

(
k2
T

)
= O(1) (B.4)

where the second inequality is due to the fact that, for any t, s = 1, . . . , T , E(a−2
T ẽtẽs) =

∞∑
j=0

c̃j c̃|t−s|+jE(a−2
T e2t−|j|) ≤ K

2/(4+κ2)
2 K

2/(4+κ1)
1 (

∞∑
j=0

c̃j)
2 < ∞. Thus we have a−1

T k
−1/2
T

T∑
t=1

ρ
−(T−t)−1
T (ẽt−1−

ẽt) = k
−1/2
T Op(1) = op(1). Similarly, letting ỸT = a−1

T k
−1/2
T

T∑
t=1

ρ−t
T et, and using entirely anal-

ogous arguments, we can show that YT = C(1)ỸT + op(1).

Next, we establish that as T → ∞, [X̃T , ỸT ]
w→ [X̃, Ỹ ], where X̃ ∼ MN(0, Vx̃), Vx̃ = g(1)2

2c
,

and Ỹ ∼ MN(0, Vỹ), Vỹ =
∫∞
0

E−2crg(r)2dr. We write:

[X̃T , ỸT ] =
T∑
t=1

ξT,tεt + op(1), ξT,t = k
−1/2
T

[
a−1
T ρ

−(T−t)−1
T , a−1

kT
ρ−t
T

]
σt (B.5)

Defining H = σ-field{{σs}T1 }, Ft−1 = σ-field{{σs}T1 , {εs}t−1
1 }, and using the law of iterated
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expectations, the conditional variance can be calculated as:

E
[
(X̃T , ỸT )(X̃T , ỸT )

′|H
]
=

T∑
t=1

E
[{
E(ξT,tξ′T,tε2t |Ft−1)

}
|H
]
+ op(1)

=
T∑
t=1

ξT,tξ
′
T,t + op(1)

= k−1
T diag

(
a−2
T

T∑
t=1

ρ
−2(T−t+1)
T σ2

t , a
−2
kT

T∑
t=1

ρ−2t
T σ2

t

)
+ op(1) (B.6)

since the off-diagonal term satisfies

E

∣∣∣∣∣a−1
T a−1

kT
k−1
T ρ

−(T+1)
T

T∑
t=1

σ2
t

∣∣∣∣∣ ≤ suptE(a−2
T σ2

t )×
aT
akT

T

kT
ρ
−(T+1)
T

≤ {suptE(a−1
T σt)

4}1/2 ×
(

T

kT

)γ+1

ρ
−(T+1)
T → 0 (B.7)

by the second part of Assumption 2(c), Assumption 3, and the fact that for any fixed κ ≥ 1,
ρ−T
T (T/kT )

κ → 0 (Proposition A.1 of Phillips and Magdalinos, 2007). Now the first term in
(B.6) is

a−2
T k−1

T

T∑
t=1

ρ
−2(T−t+1)
T σ2

t = a−2
T k−1

T

T∑
t=1

ρ−2t
T σ2

T−t+1 = a−2
T k−1

T

∫ T+1

2

ρ
−2⌊t⌋
T σ2

T−⌊t⌋+1dt

=

∫ (T+1)/kT

2/kT

ρ
−2⌊kT r⌋
T

(
σT−⌊kT r⌋+1

aT

)2

dr

=

∫ (T+1)/kT

2/kT

[(
1 +

c

kT

)kT
]−2

⌊kT r⌋
kT
(
σT−⌊kT r⌋+1

aT

)2

dr

w→
∫ ∞

0

e−2crg(1)2dr =
g(1)2

2c
(B.8)

by the continuous mapping theorem and Assumption 2(c). For the second term,

a−2
kT
k−1
T

T∑
t=1

ρ−2t
T σ2

t = a−2
kT
k−1
T

∫ T+1

2

ρ
−2⌊t⌋
T σ2

⌊t⌋dt =

∫ (T+1)/kT

2/kT

ρ
−2⌊kT r⌋
T

(
σ⌊kT r⌋

akT

)2

dr

=

∫ (T+1)/kT

2/kT

[(
1 +

c

kT

)kT
]−2

⌊kT r⌋
kT
(
σ⌊kT r⌋

akT

)2

dr

w→
∫ ∞

0

e−2crg(r)2dr (B.9)

B-3



The (conditional) Lindeberg condition is implied by the (conditional) Lyapounov condition
in view of the bounded 4+κ1 moments for {εt} assumed by Assumption 2(b). Finally, since
σt is independent of εs for any s and t [Assumption 2(d)], condition (2.3) of Wang (2014)
is satisfied ensuring asymptotic mixed Gaussianity despite the fact that convergence of the
conditional variance obtains in distribution. Further, by diagonality of (B.6), X̃T and ỸT are
asymptotically independent. Hence, XT and YT are also asymptotically independent. This
completes our proof. ■

Proof of Theorem 2: The proofs of (a)-(c) are similar to the proofs of the results in
Theorem 3.1 in Guo et al. (2019), with some differences, due to the additional scaling factor
aT or akT . Specifically, we take (c) as an example to show how to deal with this. To prove
(c), by Lemma A.1,

(akT aTµTk
3/2
T ρTT )

−1

T∑
t=1

yt−1ut = (akT aTµTk
3/2
T ρTT )

−1

T∑
t=1

(dt−1 + µT (ρ
t−1
T − 1)kT/c)ut

= (akT aTµTk
3/2
T ρTT )

−1

T∑
t=1

dt−1ut + (akT aTk
1/2
T ρTT )

−1c−1

T∑
t=1

ρt−1
T ut − (akT aTk

1/2
T ρTT )

−1c−1

T∑
t=1

ut

= XTYT/(µTk
1/2
T ) + a−1

kT
c−1(a−1

T k
−1/2
T

T∑
t=1

ρ
−(T−t)−1
T ut) +Op(T

1/2(k
1/2
T ρTT )

−1a−1
kT
) (B.10)

= XTYT/(µTk
1/2
T ) +XT/(akT c) + op(1)

w→

{
X(Y

ν
+ 1

c
) γ = 0

XY
ν

γ > 0
:= X(

Y

ν
+

1

c
1(γ = 0))

The proofs for (a) and (b) follow Guo et al. (2019) and the steps used in the proof of (c)
and are hence omitted. For (d), we have

a−1
T T−1/2

T∑
t=1

ut = a−1
T T−1/2

T∑
t=1

C(1)et + a−1
T T−1/2

T∑
t=1

(ẽt−1 − ẽt)

= C(1)× a−1
T T−1/2

T∑
t=1

et + a−1
T T−1/2ẽ0︸ ︷︷ ︸

=op(1)

− a−1
T T−1/2ẽT︸ ︷︷ ︸

=op(1)

= C(1)× a−1
T T−1/2

T∑
t=1

et + op(1)

with E[(a−1
T T−1/2

∑T
t=1 et)

2|{σt}T1 ] = a−2
T T−1

∑T
t=1 σ

2
t

w→
∫ 1

0
g(r)2dr. To show the indepen-

dence of U with X and Y , similar to (B.7), we can show that for the key elements of the
cross product of a−1

T T−1/2
∑T

t=1 ut and XT , it follows

E

∣∣∣∣∣T−1/2a−2
T k

−1/2
T

T∑
t=1

ρ
−(T−t+1)
T σ2

t

∣∣∣∣∣ ≤ suptE(a−2
T σ2

t )× T−1/2c−1k
1/2
T (1− ρ−T

T )

≤ {suptE(a−1
T σt)

4}1/2 × c−1T−1/2k
1/2
T → 0, (B.11)
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while for the cross product of a−1
T T−1/2

∑T
t=1 ut and YT , it follows

E

∣∣∣∣∣T−1/2a−1
T a−1

kT
k
−1/2
T

T∑
t=1

ρ−t
T σ2

t

∣∣∣∣∣ ≤ suptE(a−2
kT
σ2
t )×

akT
aT

T−1/2c−1k
1/2
T (1− ρ−T

T )

≤ {suptE(a−1
kT
σt)

4}1/2 ×
(
kT
T

)γ

c−1T−1/2k
1/2
T → 0. (B.12)

■

Proof of Theorem 3: The proofs are similar to the proofs of Theorem 2, so to save space,
we only give a proof of (c). We have

(akT aTkTρ
T
T )

−1

T∑
t=1

yt−1ut = (akT aTkTρ
T
T )

−1

T∑
t=1

(dt−1 + µT (ρ
t−1
T − 1)kT/c)ut

= (akT aTkTρ
T
T )

−1

T∑
t=1

dt−1ut + (µTk
1/2
T )(akT aTk

1/2
T ρTT )

−1c−1

T∑
t=1

ρt−1
T ut

−(µTk
1/2
T )(akT aTk

1/2
T ρTT )

−1c−1

T∑
t=1

ut

= XTYT + (µTk
1/2
T )a−1

kT
c−1(a−1

T k
−1/2
T

T∑
t=1

ρ
−(T−t)−1
T ut) +Op(T

1/2(k
1/2
T ρTT )

−1a−1
T (µTk

1/2
T ))

= XTYT + νXT/(akT c) + op(1) = XTYT + op(1)
w→ XY (B.13)

where the last equality holds due to the fact that aT = T γ is at least O(1) under γ ≥ 0. ■

Proof of Lemma 1: Let Φ̃T (j) = a−2
T k−1

T

T−|j|∑
t=1

ρ
−2(T−t)−2
T

∞∑
k=0

ckck+|j|σ
2
t−k. We first establish
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T−1∑
j=−(T−1)

w(j/bT )ΦT (j) =
T−1∑

j=−(T−1)

w(j/bT )Φ̃T (j) + op(1). By definition,

ΦT (j)− Φ̃T (j) = a−2
T k−1

T

∞∑
k=0

∞∑
i=0

ckci

T−|j|∑
t=1

ρ
−2(T−t)+|j|−2
T σt−kσt+|j|−iεt−kεt+|j|−i − Φ̃T (j)

= a−2
T k−1

T

∞∑
k=0

ckck+|j|

T−|j|∑
t=1

ρ
−2(T−t)+|j|−2
T σ2

t−k(ε
2
t−k − 1)︸ ︷︷ ︸

H1T (j)

+ a−2
T k−1

T

∞∑
k=0

ckck+|j|

T−|j|∑
t=1

ρ
−2(T−t)+|j|−2
T σ2

t−k(1− ρ
−|j|
T )︸ ︷︷ ︸

H2T (j)

(B.14)

+ a−2
T k−1

T

∞∑
k=0

∞∑
i=0

ckci

T−|j|∑
t=1

1(i ̸= k + |j|)ρ−2(T−t)+|j|−2
T σt−kσt+|j|−iεt−kεt+|j|−i︸ ︷︷ ︸

H3T (j)

To that end, we establish some bounds for H1T (j), H2T (j) and H3T (j). Regarding H1T (j),

let ζT,j = a−2
T k−1

T

∑T−|j|
t=1 ρ

−2(T−t)+|j|−2
T σ2

t−k(ε
2
t−k − 1), we have

E[ζ2T,j] = E

a−2
T k−1

T

T−|j|∑
t=1

ρ
−2(T−t)+|j|−2
T σ2

t−k(ε
2
t−k − 1)

2

= k−2
T

T−|j|∑
t=1

ρ
−4(T−t)+2|j|−4
T

{
a−4
T Eσ4

t−k

}{
E(ε2t−k − 1)2

}
+2k−2

T

T−|j|∑
s<t,s,t=1

ρ
−4T+2(t+s)+2|j|−4
T

{
E(a−4

T σ2
t−kσ

2
s−k)

}{
E(ε2s−k − 1)

}︸ ︷︷ ︸
=0

{
E(ε2t−k − 1)

}︸ ︷︷ ︸
=0

= k−2
T

T−|j|∑
t=1

ρ
−4(T−t)+2|j|−4
T

{
a−4
T Eσ4

t−k

}{
Eε4t−k − 2Eε2t−k + 1

}
= k−2

T

ρ
−2|j|
T − ρ

−4T+2|j|
T

ρ4T − 1

{
a−4
T Eσ4

t−k

}{
Eε4t−k − 1

}
= C1k

−1
T ρ

−2|j|
T ≤ C1k

−1
T , uniformly in j (B.15)

where C1 is a finite positive constant which does not depend on j and T . Then (B.15) implies

E|ζT,j| ≤ (E[ζ2T,j])1/2 ≤ O(k
−1/2
T ), uniformly in j. Thus, E

∣∣∣H1T (j)
∣∣∣ = E

∣∣∣∑∞
k=0 ckck+|j|ζT,j

∣∣∣ ≤
B-6



∑∞
k=0

∣∣∣ckck+|j|

∣∣∣E∣∣∣ζT,j∣∣∣ = k
−1/2
T C

1/2
1

∑∞
k=0

∣∣∣ckck+|j|

∣∣∣ = O(k
−1/2
T ). Regarding H2T (j),

E
∣∣∣H2T (j)

∣∣∣ = E
∣∣∣a−2

T k−1
T

∞∑
k=0

ckck+|j|

T−|j|∑
t=1

ρ
−2(T−t)+|j|−2
T σ2

t−k(1− ρ
−|j|
T )

∣∣∣
≤ {suptE(a−1

T σt−k)
4}1/2 ×

∞∑
k=0

|ckck+|j|| × k−1
T

T−|j|∑
t=1

ρ
−2(T−t)+|j|−2
T (1− ρ

−|j|
T )

= C2

∞∑
k=0

|ckck+|j||(ρ−|j|
T − ρ

−2|j|
T ) (B.16)

where C2 is a finite positive constant which does not depend on j and T . Regarding H3T (j),

E
∣∣∣H3T (j)

∣∣∣ = E
∣∣∣a−2

T k−1
T

∞∑
k=0

∞∑
i=0

ckci

T−|j|∑
t=1

1(i ̸= k + |j|)ρ−2(T−t)+|j|−2
T σt−kσt+|j|−iεt−kεt+|j|−i

∣∣∣
≤

∞∑
k=0

∞∑
i=0

|ckci|

E

1(i ̸= k + |j|)
T−|j|∑
t=1

a−2
T k−1

T ρ
−2(T−t)+|j|−2
T σt−kσt+|j|−iεt−kεt+|j|−i

21/2

=
∞∑
k=0

∞∑
i=0

|ckci|1(i ̸= k + |j|)

(
E

T−|j|∑
t=1

a−4
T k−2

T ρ
−4(T−t)+2|j|−4
T σ2

t−kσ
2
t+|j|−iε

2
t−kε

2
t+|j|−i


+2

T−|j|∑
s<t,s,t=1

a−4
T k−2

T ρ
−4T+2(t+s)+2|j|−4
T {E(σt−kσs−kσt+|j|−iσs+|j|−i)} {E(εt−kεs−kεt+|j|−iεs+|j|−i)}︸ ︷︷ ︸

=0

)1/2

≤
∞∑
k=0

∞∑
i=0

|ckci|1(i ̸= k + |j|)

(
k−2
T

T−|j|∑
t=1

ρ
−4(T−t)+2|j|−4
T

×{suptE(a−1
T σt−k)

4}1/2{suptE(a−1
T σt+|j|−i)

4}1/2{suptEε4t−k}1/2{suptEε4t+|j|−i}1/2
)1/2

= k
−1/2
T C3

∞∑
k=0

∞∑
i=0

|ckci|1(i ̸= k + |j|)ρ−|j|
T ≤ k

−1/2
T C3(

∞∑
k=0

|ck|)2, uniformly in j (B.17)

where C3 is a finite positive constant which does not depend on j and T . Now combining
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the above three bounds, we claim

E

∣∣∣∣∣∣
T−1∑

j=−(T−1)

w(j/bT )[ΦT (j)− Φ̃T (j)]

∣∣∣∣∣∣
≤ E

∣∣∣∣∣∣
T−1∑

j=−(T−1)

w(j/bT )H1T (j)

∣∣∣∣∣∣+ E

∣∣∣∣∣∣
T−1∑

j=−(T−1)

w(j/bT )H2T (j)

∣∣∣∣∣∣+ E

∣∣∣∣∣∣
T−1∑

j=−(T−1)

w(j/bT )H3T (j)

∣∣∣∣∣∣
= o(1) + o(1) + o(1) = o(1) (B.18)

Define HiT =
∑T−1

j=−(T−1)w(j/bT )HiT (j), i = 1, 2, 3. The claim (B.18) holds if E|HiT | =
o(1), i = 1, 2, 3. We consider each of these terms in turn.

For E|H1T |,

E

∣∣∣∣∣∣
T−1∑

j=−(T−1)

w(j/bT )H1T (j)

∣∣∣∣∣∣ ≤ k
−1/2
T supx|w(x)|C

1/2
1

T−1∑
j=−(T−1)

∞∑
k=0

|ckck+|j||

≤ k
−1/2
T × 1× C

1/2
1

∞∑
k=0

|ck|
T−1∑

j=−(T−1)

|ck+|j|| ≤ k
−1/2
T C

1/2
1 (

∞∑
k=0

|ck|)2 = O(k
−1/2
T )(B.19)

For E|H2T |,

E

∣∣∣∣∣∣
T−1∑

j=−(T−1)

w(j/bT )H2T (j)

∣∣∣∣∣∣ ≤ C2

T−1∑
j=−(T−1)

|w(j/bT )|
∞∑
k=0

|ckck+|j||(ρ−|j|
T − ρ

−2|j|
T )

= 2C2

 bT∑
j=0

|w(j/bT )|
∞∑
k=0

|ckck+j|(ρ−j
T − ρ−2j

T ) +
T−1∑

j=bT+1

|w(j/bT )|
∞∑
k=0

|ckck+j| (ρ−j
T − ρ−2j

T )︸ ︷︷ ︸
≤1


≤ 2C2

(
supx|w(x)|(

∞∑
k=0

|ck|)2
bT∑
j=0

(ρ−j
T − ρ−2j

T ) + supx|w(x)|
T−1∑

j=bT+1

∞∑
k=0

|ckck+j|

)

≤ 2C2

(
supx|w(x)|(

∞∑
k=0

|ck|)2 ×O(k−1
T b2T ) + supx|w(x)|

∞∑
k=0

|ck|
T−1∑

j=bT+1

|ck+j|

)

≤ O(k−1
T b2T ) + supx|w(x)|

∞∑
k=0

|ck|
T−1∑

j=bT+1

|cj| = o(1) + o(1) = o(1) (B.20)

B-8



which uses the fact that, by binomial expansion,

bT∑
j=0

(ρ−j
T − ρ−2j

T ) =

bT∑
j=0

ρ−j
T −

bT∑
j=0

ρ−2j
T =

1− ρ−bT−1
T

1− ρ−1
T

− 1− ρ−2bT−2
T

1− ρ−2
T

=
ρT + ρ−2bT

T − ρ−bT+1
T − ρ−bT

T

ρ2T − 1
=

[ρ2bT+1
T + 1]− [ρbTT (1 + ρT )]

ρ2bTT (ρ2T − 1)

=
[2 + c(2bT + 1)k−1

T +O(b2Tk
−2
T )]− [(1 + cbTk

−1
T +O(b2Tk

−2
T ))(2 + ck−1

T )]

O(ck−1
T )

=
O(b2Tk

−2
T )

O(ck−1
T )

= O(k−1
T b2T ) (B.21)

and
∑T−1

j=bT+1 |cj| = o(b−1
T ), (see Chang and Park, 2002, p.434).

For E|H3T |,

E

∣∣∣∣∣∣
T−1∑

j=−(T−1)

w(j/bT )H3T (j)

∣∣∣∣∣∣ ≤
T−1∑

j=−(T−1)

|w(j/bT )|k−1/2
T C3(

∞∑
k=0

|ck|)2

=

k
−1/2
T

T−1∑
j=−(T−1)

|w(j/bT )|

× C3(
∞∑
k=0

|ck|)2 = o(1) (B.22)

since k
−1/2
T

∑T−1
j=−(T−1) |w(j/bT )| =

(
k
−1/2
T bT

)
×
(
b−1
T

∑T−1
j=−(T−1) |w(j/bT )|

)
= O(k

−1/2
T bT ) =

o(1) using the fact that b−1
T

∑T−1
j=−(T−1) |w(j/bT )| →

∫ +∞
−∞ |w(x)|dx < +∞. Therefore, to

prove the lemma, it suffices to show that
T−1∑

j=−(T−1)

w(j/bT )Φ̃T (j)
w→ Vx. We can write

T−1∑
j=−(T−1)

w(j/bT )Φ̃T (j) =
T−1∑

j=−(T−1)

w(j/bT )a
−2
T k−1

T

T−|j|∑
t=1

ρ
−2(T−t)−2
T

∞∑
k=0

ckck+|j|σ
2
t−k

=
T−1∑

j=−(T−1)

w(j/bT )a
−2
T k−1

T

T−|j|∑
t=1

ρ
−2(T−t)−2
T

∞∑
k=0

ckck+|j|σ
2
t (B.23)

+
T−1∑

j=−(T−1)

w(j/bT )a
−2
T k−1

T

T−|j|∑
t=1

ρ
−2(T−t)−2
T

∞∑
k=0

ckck+|j|(σ
2
t−k − σ2

t ) := G1T +G2T

The proof is then completed if we prove G1T
w→ Vx, and G2T = op(1). Regarding G1T , we
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have

T−1∑
j=−(T−1)

w(j/bT )a
−2
T k−1

T

T−|j|∑
t=1

ρ
−2(T−t)−2
T

∞∑
k=0

ckck+|j|σ
2
t

=
T−1∑

j=−(T−1)

w(j/bT )a
−2
T k−1

T

T∑
t=1

ρ
−2(T−t)−2
T

∞∑
k=0

ckck+|j|σ
2
t

−
T−1∑

j=−(T−1)

w(j/bT )a
−2
T k−1

T

T∑
t=T−|j|+1

ρ
−2(T−t)−2
T

∞∑
k=0

ckck+|j|σ
2
t (B.24)

By Lemma 6 of Jansson (2002), i.e.,
T−1∑

j=−(T−1)

w(j/bT )
∞∑
k=0

ckck+|j| → C(1)2, we can write the

first term in (B.24) as

T−1∑
j=−(T−1)

w(j/bT )a
−2
T k−1

T

T∑
t=1

ρ
−2(T−t)−2
T

∞∑
k=0

ckck+|j|σ
2
t

=

 T−1∑
j=−(T−1)

w(j/bT )
∞∑
k=0

ckck+|j|

(a−2
T k−1

T

T∑
t=1

ρ
−2(T−t)−2
T σ2

t

)
w→ C(1)2 lim

T→∞

∫ ∞

0

E−2crg(1)2dr =
C(1)2g(1)2

2c
= Vx (B.25)

The second term in (B.24) converges in probability to zero since

E

∣∣∣∣∣∣
T−1∑

j=−(T−1)

w(j/bT )a
−2
T k−1

T

T∑
t=T−|j|+1

ρ
−2(T−t)−2
T

∞∑
k=0

ckck+|j|σ
2
t

∣∣∣∣∣∣ (B.26)

≤ k−1
T supx|w(x)|{suptE(a−1

T σt)
4}1/2

T−1∑
j=−(T−1)

T∑
t=T−|j|+1

ρ
−2(T−t)−2
T

∞∑
k=0

|ckck+|j||

≤ k−1
T K

2/(4+κ2)
2

T−1∑
j=−(T−1)

|j|
∞∑
k=0

|ckck+|j|| ≤ k−1
T K

2/(4+κ2)
2

∞∑
k=0

|ck|
T−1∑

j=−(T−1)

|j||ck+|j|| = O(k−1
T )

where the second inequality in (B.26) uses the fact that ρ
−2(T−t)−2
T ≤ 1 for t = T − |j| +

1, . . . , T , and the last equality in (B.26) holds since by Assumption 2(a),
∑∞

j=0 j|cj| < ∞,
we have for any k ≥ 0,

∑∞
j=0 j|ck+j| ≤

∑∞
j=0(k + j)|ck+j| ≤

∑∞
j=0 j|cj| < ∞.

Regarding G2T , let mT = K3T
ω, 0 < ω < 1 and K3 is a constant which does not depend

on T . It follows
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E

 T−1∑
j=−(T−1)

|w(j/bT )|a−2
T k−1

T

T−|j|∑
t=1

ρ
−2(T−t)−2
T

∞∑
k=0

|ckck+|j||
∣∣∣σ2

t−k − σ2
t

∣∣∣


= E

 T−1∑
j=−(T−1)

|w(j/bT )|
∞∑
k=0

|ckck+|j||a−2
T k−1

T

T−|j|∑
t=1

ρ
−2(T−t)−2
T

∣∣∣σ2
t−k − σ2

t

∣∣∣


= E

 T−1∑
j=−(T−1)

|w(j/bT )|
mT∑
k=0

|ckck+|j||a−2
T k−1

T

T−|j|∑
t=1

ρ
−2(T−t)−2
T

∣∣∣σ2
t−k − σ2

t

∣∣∣


+E

 T−1∑
j=−(T−1)

|w(j/bT )|
∞∑

k=mT+1

|ckck+|j||a−2
T k−1

T

T−|j|∑
t=1

ρ
−2(T−t)−2
T

∣∣∣σ2
t−k − σ2

t

∣∣∣


≤
T−1∑

j=−(T−1)

|w(j/bT )|
mT∑
k=0

|ckck+|j||E

supj<mT
a−2
T k−1

T

T−|j|∑
t=1

ρ
−2(T−t)−2
T

∣∣∣σ2
t−k − σ2

t

∣∣∣


+

(
T−1∑

j=−(T−1)

|w(j/bT )|
∞∑

k=mT+1

|ckck+|j||k−1
T

T−|j|∑
t=1

ρ
−2(T−t)−2
T

)
× 2{suptE(a−1

T σt)
4}1/2

≤ supx|w(x)|(
∞∑
k=0

|ck|)2E

supj<mT ,k≤mT
a−2
T k−1

T

T−|j|∑
t=1

ρ
−2(T−t)−2
T

∣∣∣σ2
t−k − σ2

t

∣∣∣


+2{suptE(a−1
T σt)

4}1/2supx|w(x)|
∞∑

k=mT+1

|ck|
T−1∑

j=−(T−1)

|ck+|j|| × C4 (B.27)

= o(1) + o(1) = o(1)

since for the first term in (B.27), following Lemma A.1 in Cavaliere and Taylor (2009),

supj<mT ,k≤mT
a−2
T k−1

T

T−|j|∑
t=1

ρ
−2(T−t)−2
T

∣∣∣σ2
t−k−σ2

t

∣∣∣ ≤ k−1
T

T−|j|∑
t=1

ρ
−2(T−t)−2
T ×supt≤T−|j|,j<mT ,k≤mT

a−2
T |σ2

t−k−

σ2
t

∣∣∣ = k−1
T ×O(kT )×op(1) = op(1).

1 For the second term in (B.27), it follows k−1
T

T−|j|∑
t=1

ρ
−2(T−t)−2
T =

C4×ρ
−2|j|
T ≤ C4, where C4 is a finite constant independent of T and j, and

∞∑
k=mT+1

|ck|
T−1∑

j=−(T−1)

|ck+|j|| ≤

1This directly follows from the fact that if σ2(·) has continuous sample paths almost surely, then

supt≤T−|j|,j<mT ,k≤mT
a−2
T |σ2

t−k − σ2
t

∣∣∣ = op(1); if σ
2(·) does not have continuous sample paths almost surely,

a similar proof of Lemma A.1 in Cavaliere and Taylor (2009) can be given to establish this result.
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(
∞∑

k=mT+1

|ck|)(
∞∑
k=0

|ck|) → 0 as T → ∞. ■

Proof of Theorem 4: The proof of this theorem builds extensively on Lemmas A.3-A.4.
By the definition of Ω̂, we have

T (akT aTµTk
3/2
T ρTT )

−2Ω̂ =
T−1∑

j=−(T−1)

w(j/bT )(akT aTµTk
3/2
T ρTT )

−2T Γ̂(j) (B.28)

We first work out the details of (akT aTµTk
3/2
T ρTT )

−2T Γ̂(j), using the fact that ût = u̇t −
ẏt−1(ρ̂T − ρT ). We have

(akT aTµTk
3/2
T ρTT )

−2T Γ̂(j)

= (akT aTµTk
3/2
T ρTT )

−2

T−|j|∑
t=1

ẏt−1ûtẏt+|j|−1ût+|j|

= (akT aTµTk
3/2
T ρTT )

−2

T−|j|∑
t=1

[
ẏt−1u̇tẏt+|j|−1u̇t+|j| − (ρ̂T − ρT )ẏ

2
t−1ẏt+|j|−1u̇t+|j|

−(ρ̂T − ρT )ẏt−1ẏ
2
t+|j|−1u̇t + (ρ̂T − ρT )

2ẏ2t−1ẏ
2
t+|j|−1

]
:= Aj −Bj − Cj +Dj (B.29)

Specifically, by Lemma A.3 and ȳ−1 = Op(T
−1akTµTk

2
Tρ

T
T ) which is implied by Theorem

2(b), we have
Bj:

(akT aTµTk
3/2
T ρTT )

−2

T−|j|∑
t=1

(ρ̂T − ρT )ẏ
2
t−1ẏt+|j|−1u̇t+|j| (B.30)

= (akT aTµTk
3/2
T ρTT )

−2

T−|j|∑
t=1

(ρ̂T − ρT )(yt−1 − ȳ−1)
2(yt+|j|−1 − ȳ−1)ut+|j|

−(akT aTµTk
3/2
T ρTT )

−2

T−|j|∑
t=1

(ρ̂T − ρT )(yt−1 − ȳ−1)
2(yt+|j|−1 − ȳ−1)ū := B1j −B2j
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B1j:

(akT aTµTk
3/2
T ρTT )

−2

T−|j|∑
t=1

(ρ̂T − ρT )ẏ
2
t−1ẏt+|j|−1ut+|j|

= (akT aTµTk
3/2
T ρTT )

−2(ρ̂T − ρT )

T−|j|∑
t=1

(yt−1 − ȳ−1)
2(yt+|j|−1 − ȳ−1)ut+|j|

= (akT aTµTk
3/2
T ρTT )

−2(ρ̂T − ρT )

T−|j|∑
t=1

[
y2t−1yt+|j|−1ut+|j| − y2t−1ut+|j|ȳ−1 − 2yt−1yt+|j|−1ut+|j|ȳ−1

+2yt−1ut+|j|ȳ
2
−1 + yt+|j|−1ut+|j|ȳ

2
−1 − ut+|j|ȳ

3
−1

]
= (akT aTµTk

3/2
T ρTT )

−2 ×Op((akT a
−1
T µTk

3/2
T ρTT )

−1)×
[
Op(a

3
kT
aTµ

3
Tk

7/2
T ρ3TT )

+Op(a
2
kT
aTµ

2
Tk

5/2
T ρ2TT )Op(T

−1akTµTk
2
Tρ

T
T ) +Op(a

2
kT
aTµ

2
Tk

5/2
T ρ2TT )Op(T

−1akTµTk
2
Tρ

T
T )

+Op(akT aTµTk
3/2
T ρTT )Op((T

−1akTµTk
2
Tρ

T
T )

2) +Op(akT aTµTk
3/2
T ρTT )Op((T

−1akTµTk
2
Tρ

T
T )

2)

+Op(akTT
1/2)Op((T

−1akTµTk
2
Tρ

T
T )

3)
]

= Op(k
−1
T ) +Op(T

−1) +Op(T
−2kT ) +Op(akT a

−1
T T−5/2k

3/2
T ) = Op(k

−1
T )

B2j:

(akT aTµTk
3/2
T ρTT )

−2

T−|j|∑
t=1

(ρ̂T − ρT )ẏ
2
t−1ẏt+|j|−1ū

= (akT aTµTk
3/2
T ρTT )

−2(ρ̂T − ρT )ū

T−|j|∑
t=1

(yt−1 − ȳ−1)
2(yt+|j|−1 − ȳ−1)

= (akT aTµTk
3/2
T ρTT )

−2(ρ̂T − ρT )ū

T−|j|∑
t=1

[
y2t−1yt+|j|−1 − y2t−1ȳ−1 − 2yt−1yt+|j|−1ȳ−1

+2yt−1ȳ
2
−1 + yt+|j|−1ȳ

2
−1 − ȳ3−1

]
= (akT aTµTk

3/2
T ρTT )

−2 ×Op((akT a
−1
T µTk

3/2
T ρTT )

−1)×Op(aTT
−1/2)×

[
Op(a

3
kT
µ3
Tk

4
Tρ

3T
T )

+Op(a
2
kT
µ2
Tk

3
Tρ

2T
T )Op(T

−1akTµTk
2
Tρ

T
T ) +Op(a

2
kT
µ2
Tk

3
Tρ

2T
T )Op(T

−1akTµTk
2
Tρ

T
T )

+Op(akTµTk
2
Tρ

T
T )Op((T

−1akTµTk
2
Tρ

T
T )

2) +Op(akTµTk
2
Tρ

T
T )Op((T

−1akTµTk
2
Tρ

T
T )

2)

+Op((T
−1akTµTk

2
Tρ

T
T )

3)
]

= Op(T
−1/2k

−1/2
T ) +Op(T

−3/2k
1/2
T ) +Op(T

−5/2k
3/2
T ) = op(k

−1
T )

which gives Bj = Op(k
−1
T ). Cj = Op(k

−1
T ) follows from the same proof as that for Bj.
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Dj:

(akT aTµTk
3/2
T ρTT )

−2

T−|j|∑
t=1

(ρ̂T − ρT )
2ẏ2t−1ẏ

2
t+|j|−1

= (akT aTµTk
3/2
T ρTT )

−2

T−|j|∑
t=1

(ρ̂T − ρT )
2
[
y2t−1y

2
t+|j|−1 − 2y2t−1yt+|j|−1ȳ−1 + y2t−1ȳ

2
−1 − 2yt−1y

2
t+|j|−1ȳ−1

+4yt−1yt+|j|−1ȳ
2
−1 − 2yt−1ȳ

3
−1 + y2t+|j|−1ȳ

2
−1 − 2yt+|j|−1ȳ

3
−1 + ȳ4−1

]
= (akT aTµTk

3/2
T ρTT )

−2 ×Op((akT a
−1
T µTk

3/2
T ρTT )

−2)×
[
Op(a

4
kT
µ4
Tk

5
Tρ

4T
T )

+Op(a
3
kT
µ3
Tk

4
Tρ

3T
T )Op(T

−1akTµTk
2
Tρ

T
T ) +Op(a

2
kT
µ2
Tk

3
Tρ

2T
T )Op((T

−1akTµTk
2
Tρ

T
T )

2)

+Op(a
3
kT
µ3
Tk

4
Tρ

3T
T )Op(T

−1akTµTk
2
Tρ

T
T ) +Op(a

2
kT
µ2
Tk

3
Tρ

2T
T )Op((T

−1akTµTk
2
Tρ

T
T )

2)

+Op(akTµTk
2
Tρ

T
T )Op((T

−1akTµTk
2
Tρ

T
T )

3) +Op(a
2
kT
µ2
Tk

3
Tρ

2T
T )Op((T

−1akTµTk
2
Tρ

T
T )

2)

+Op(akTµTk
2
Tρ

T
T )Op((T

−1akTµTk
2
Tρ

T
T )

3) +Op((T
−1akTµTk

2
Tρ

T
T )

4)
]

= Op(k
−1
T ) +Op(T

−1) +Op(T
−2kT ) +Op(T

−3k2
T ) +Op(T

−4k2
T ) = Op(k

−1
T )

Thus Bj, Cj and Dj are all Op(k
−1
T ). We next calculate Aj.

Aj:

(akT aTµTk
3/2
T ρTT )

−2

T−|j|∑
t=1

ẏt−1u̇tẏt+|j|−1u̇t+|j|

= (akT aTµTk
3/2
T ρTT )

−2

T−|j|∑
t=1

ẏt−1(ut − ū)ẏt+|j|−1(ut+|j| − ū)

= (akT aTµTk
3/2
T ρTT )

−2

T−|j|∑
t=1

ẏt−1utẏt+|j|−1ut+|j| + (akT aTµTk
3/2
T ρTT )

−2ū2

T−|j|∑
t=1

ẏt−1ẏt+|j|−1

−(akT aTµTk
3/2
T ρTT )

−2ū

T−|j|∑
t=1

[
ẏt−1ẏt+|j|−1ut + ẏt−1ẏt+|j|−1ut+|j|

]
:= A1j + A2j − A3j (B.31)

In what follows, we derive the orders for A2j, A3j, and claim they are asymptotically negli-
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gible. Similar to the foregoing analysis, we have

A2j = (akT aTµTk
3/2
T ρTT )

−2ū2

T−|j|∑
t=1

ẏt−1ẏt+|j|−1 (B.32)

= (akT aTµTk
3/2
T ρTT )

−2 ×Op(a
2
TT

−1)×Op(a
2
kT
µ2
Tk

3
Tρ

2T
T ) + s.o. = Op(T

−1) = op(k
−1
T ),

A3j = (akT aTµTk
3/2
T ρTT )

−2ū

T−|j|∑
t=1

[
ẏt−1ẏt+|j|−1ut + ẏt−1ẏt+|j|−1ut+|j|

]
(B.33)

= (akT aTµTk
3/2
T ρTT )

−2 ×Op(aTT
−1/2)×Op(a

2
kT
aTµ

2
Tk

5/2
T ρ2TT ) + s.o.

= Op(T
−1/2k

−1/2
T ) = op(k

−1
T )

Then we analyze A1j:

(akT aTµTk
3/2
T ρTT )

−2

T−|j|∑
t=1

ẏt−1utẏt+|j|−1ut+|j|

= (akT aTµTk
3/2
T ρTT )

−2

T−|j|∑
t=1

yt−1utyt+|j|−1ut+|j| + (akT aTµTk
3/2
T ρTT )

−2

T−|j|∑
t=1

utut+|j|ȳ
2
−1

−(akT aTµTk
3/2
T ρTT )

−2

T−|j|∑
t=1

yt−1utut+|j|ȳ−1 − (akT aTµTk
3/2
T ρTT )

−2

T−|j|∑
t=1

utyt+|j|−1ut+|j|ȳ−1

:= A1j,1 + A1j,2 − A1j,3 − A1j,4 (B.34)

where A1j,2:

(akT aTµTk
3/2
T ρTT )

−2

T−|j|∑
t=1

utut+|j|ȳ
2
−1 = T−1kT (T

−1akTµTk
2
Tρ

T
T )

−2ȳ2−1 × a−2
T T−1

T−|j|∑
t=1

utut+|j|

= O(T−1kT )Op(1)× a−2
T T−1

T−|j|∑
t=1

utut+|j| = Op(T
−1kT )× a−2

T T−1

T−|j|∑
t=1

utut+|j| (B.35)

A1j,3:

(akT aTµTk
3/2
T ρTT )

−2

T−|j|∑
t=1

yt−1utut+|j|ȳ−1

= T−1/2k
1/2
T (T−1akTµTk

2
Tρ

T
T )

−1ȳ−1︸ ︷︷ ︸
=Op(1)

×(T 1/2akT a
2
TµTk

3/2
T ρTT )

−1

T−|j|∑
t=1

yt−1utut+|j|

= Op(T
−1/2k

1/2
T )× (T 1/2akT a

2
TµTk

3/2
T ρTT )

−1

T−|j|∑
t=1

yt−1utut+|j| (B.36)
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A1j,4 = Op(T
−1/2k

1/2
T ) × (T 1/2akT a

2
TµTk

3/2
T ρTT )

−1
∑T−|j|

t=1 utyt+|j|−1ut+|j| follows the same way
as A1j,3.

To calculate A1j,1, let ẎT := (µTk
1/2
T )−1YT + 1/(akT c). It then follows ẎT

w→ Y/ν +

1/(c)1(γ = 0). By Lemma A.2 and the assumption a−1
kT
y0 = op(k

1/2
T ), with some algebra, we

have
A1j,1:

(akT aTµTk
3/2
T ρTT )

−2

T−|j|∑
t=1

yt−1utyt+|j|−1ut+|j|

= (akT aTµTk
3/2
T ρTT )

−2

T−|j|∑
t=1

[{
y0ρ

t−1
T +

t−1∑
i1=1

ρt−1−i1
T ui1 + µT (ρ

t−1
T − 1)kT/c

}
ut ×

{
y0ρ

t+|j|−1
T +

t+|j|−1∑
i2=1

ρ
t+|j|−1−i2
T ui2 + µT (ρ

t+|j|−1
T − 1)kT/c

}
ut+|j|

]

= (akT aTµTk
3/2
T ρTT )

−2

T−|j|∑
t=1

[{ T∑
i1=1

ρt−1−i1
T ui1 + µTρ

t−1
T kT/c

}
ut ×

{ T∑
i2=1

ρ
t+|j|−1−i2
T ui2 + µTρ

t+|j|−1
T kT/c

}
ut+|j|

]
+ op(k

−1
T )

=

a−2
T k−1

T

T−|j|∑
t=1

ρ
−2(T−t)+|j|−2
T utut+|j|

((µTk
1/2
T )−1a−1

kT
k
−1/2
T

T∑
t=1

ρ−t
T ut + a−1

kT
c−1

)2

+ op(k
−1
T )

= ΦT (j)Ẏ
2
T + op(k

−1
T ) (B.37)
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Now, we combine Aj-Dj and use Lemma 1 to obtain

T−1∑
j=−(T−1)

w(j/bT )(Aj −Bj − Cj +Dj) (B.38)

=
T−1∑

j=−(T−1)

w(j/bT )(A1j,1 + A1j,2 − A1j,3 − A1j,4+A2j − A3j︸ ︷︷ ︸
op(k

−1
T )

−Bj − Cj +Dj︸ ︷︷ ︸
Op(k

−1
T )

)

=
T−1∑

j=−(T−1)

w(j/bT )(A1j,1 + A1j,2 − A1j,3 − A1j,4) + op(1)

=
T−1∑

j=−(T−1)

w(j/bT )
{
ΦT (j)Ẏ

2
T + op(k

−1
T )︸ ︷︷ ︸

A1j,1

}
+

T−1∑
j=−(T−1)

w(j/bT )A1j,2︸ ︷︷ ︸
p→0

−
T−1∑

j=−(T−1)

w(j/bT )A1j,3︸ ︷︷ ︸
p→0

−
T−1∑

j=−(T−1)

w(j/bT )A1j,4︸ ︷︷ ︸
p→0

+op(1) = Ẏ 2
T

T−1∑
j=−(T−1)

w(j/bT )ΦT (j) + op(1)
w→ Vx(

Y

ν
+

1

c
1(γ = 0))2

Note in the above
∑T−1

j=−(T−1)w(j/bT )A1j,2
p→ 0 holds due to

T−1∑
j=−(T−1)

w(j/bT )A1j,2 = Op(T
−1kT )× a−2

T T−1

T−1∑
j=−(T−1)

w(j/bT )

T−|j|∑
t=1

utut+|j|︸ ︷︷ ︸
w→σ2

u

p→ 0

where the result a−2
T T−1

∑T−1
j=−(T−1)w(j/bT )

∑T−|j|
t=1 utut+|j|

w→ σ2
u can be proved analogously

to Lemma 1. Next,
∑T−1

j=−(T−1)w(j/bT )A1j,3
p→ 0 holds due to

T−1∑
j=−(T−1)

w(j/bT )A1j,3 = Op(T
−1/2k

1/2
T )×(T 1/2akT a

2
TµTk

3/2
T ρTT )

−1

T−1∑
j=−(T−1)

w(j/bT )

T−|j|∑
t=1

yt−1utut+|j|︸ ︷︷ ︸
=Op(T−1/2k

1/2
T )

p→ 0
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since

(T 1/2akT a
2
TµTk

3/2
T ρTT )

−1

T−1∑
j=−(T−1)

w(j/bT )

T−|j|∑
t=1

yt−1utut+|j|

= (T 1/2akT a
2
TµTk

3/2
T ρTT )

−1

T−1∑
j=−(T−1)

w(j/bT )

T−|j|∑
t=1

yt−1

∞∑
k=0

∞∑
i=0

ckciσt−kσt+|j|−iεt−kεt+|j|−i

= (T 1/2akT a
2
TµTk

3/2
T ρTT )

−1

T−1∑
j=−(T−1)

w(j/bT )
T∑
t=1

yt−1

∞∑
k=0

ckck+|j|σ
2
t−k + op(1) (B.39)

= (T 1/2akT a
2
TµTk

3/2
T ρTT )

−1

T−1∑
j=−(T−1)

w(j/bT )
T∑
t=1

yt−1

∞∑
k=0

ckck+|j|σ
2
t + op(1) (B.40)

w→
T−1∑

j=−(T−1)

w(j/bT )
∞∑
k=0

ckck+|j| × (T 1/2akT a
2
TµTk

3/2
T ρTT )

−1

T∑
t=1

yt−1σ
2
t

w→ C(1)2 × (T 1/2akT a
2
TµTk

3/2
T ρTT )

−1Op(akT a
2
TµTk

2
Tρ

T
T ) = Op(T

−1/2k
1/2
T ) (B.41)

where (B.39) and (B.40) can be established in a similar manner to the proof of Lemma 1,
(B.41) holds because of Lemma A.6. Finally,

∑T−1
j=−(T−1)w(j/bT )A1j,4

p→ 0 follows from the
same arguments used for A1j,3. The result of Theorem 4 follows. ■

Proof of Theorem 5: This is proved in the main text, see (18)-(19). ■

Proof of Theorem 6: We will prove the result for X∗
T . First we note that conditionally

on ût, û
∗
t , t = 1, . . . , T is normally distributed over time with zero mean, thus the partial

sum process is normally distributed with zero mean. In what follows, we focus on deriving
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its variance. Using the fact that Cov(ηs, ηt) = E(ηsηt) = K( s−t
lT

), it follows

E∗ [X∗2
T

]
= E∗

[
a−1
T k

−1/2
T

T∑
t=1

ρ̂
−(T−t)−1
T u∗

t

]2
= E∗

[
a−1
T k

−1/2
T

T∑
t=1

ρ̂
−(T−t)−1
T ηtût

]2

= a−2
T k−1

T

T∑
t=1

T∑
s=1

ρ̂
−[2T−(t+s)]−2
T ûtûsE(ηsηt)

= a−2
T k−1

T

T∑
t=1

T∑
s=1

K(
s− t

lT
)ρ̂

−[2T−(t+s)]−2
T ûtûs

=
T−1∑

j=−(T−1)

K(
j

lT
)
[
a−2
T k−1

T

T−|j|∑
t=1

ρ̂
−2(T−t)+|j|−2
T ûtût+|j|

]

=
T−1∑

j=−(T−1)

K(
j

lT
)
[
a−2
T k−1

T

T−|j|∑
t=1

ρ̂
−2(T−t)+|j|−2
T utut+|j|

]
+ op(1) (B.42)

=
T−1∑

j=−(T−1)

K(
j

lT
)
[
a−2
T k−1

T

T−|j|∑
t=1

ρ
−2(T−t)+|j|−2
T utut+|j|

]

+op(1)×
T−1∑

j=−(T−1)

K(
j

lT
)
[
a−2
T k−1

T

T−|j|∑
t=1

utut+|j|

]
︸ ︷︷ ︸

w→σ2
u

+op(1) (B.43)

w→ Vx (B.44)

where the op(1) in (B.42) is not surprising as, under ût = u̇t − ẏt−1(ρ̂T − ρT ),

a−2
T k−1

T

T−|j|∑
t=1

ρ̂
−2(T−t)+|j|−2
T (ûtût+|j| − utut+|j|)

= a−2
T k−1

T

T−|j|∑
t=1

ρ̂
−2(T−t)+|j|−2
T

[
(u̇tu̇t+|j| − utut+|j|)− (ρ̂T − ρT )ẏt−1u̇t+|j|

−(ρ̂T − ρT )ẏt+|j|−1u̇t + (ρ̂T − ρT )
2ẏt−1ẏt+|j|−1

]
:= Ãj − B̃j − C̃j + D̃j (B.45)

where, using the results from Lemma A.6, we can easily derive
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B̃j:

a−2
T k−1

T

T−|j|∑
t=1

ρ̂
−2(T−t)+|j|−2
T (ρ̂T − ρT )ẏt−1u̇t+|j|

= a−2
T k−1

T (ρ̂T − ρT )

T−|j|∑
t=1

ρ̂
−2(T−t)+|j|−2
T

[
yt−1ut+|j| + ȳ−1ū− yt−1ū− ȳ−1ut+|j|

]
= a−2

T k−1
T ×Op((µTk

3/2
T ρTT )

−1)×Op(akT aTµTk
3/2
T ρTT ) + s.o. = Op(akT a

−1
T k−1

T )(B.46)

C̃j = Op(akT a
−1
T k−1

T ), which follows the same proof as B̃j.

D̃j:

a−2
T k−1

T

T−|j|∑
t=1

ρ̂
−2(T−t)+|j|−2
T (ρ̂T − ρT )

2ẏt−1ẏt+|j|−1

= a−2
T k−1

T (ρ̂T − ρT )
2

T−|j|∑
t=1

ρ̂
−2(T−t)+|j|−2
T

[
yt−1yt+|j|−1 − yt−1ȳ−1 − yt+|j|−1ȳ−1 + ȳ2−1

]
= a−2

T k−1
T ×Op((µTk

3/2
T ρTT )

−2)×Op(a
2
kT
µ2
Tk

3
Tρ

2T
T ) + s.o. = Op(a

2
kT
a−2
T k−1

T ) (B.47)

Ãj:

a−2
T k−1

T

T−|j|∑
t=1

ρ̂
−2(T−t)+|j|−2
T (u̇tu̇t+|j| − utut+|j|)

= a−2
T k−1

T

T−|j|∑
t=1

ρ̂
−2(T−t)+|j|−2
T ū2 − a−2

T k−1
T

T−|j|∑
t=1

ρ̂
−2(T−t)+|j|−2
T ut+|j|ū− a−2

T k−1
T

T−|j|∑
t=1

ρ̂
−2(T−t)+|j|−2
T utū

= (a−2
T k−1

T )Op(a
2
TT

−1)O(kT ) +Op(aTT
−1/2)Op(a

−1
T k

−1/2
T ) +Op(aTT

−1/2)Op(a
−1
T k

−1/2
T )

= Op(T
−1) +Op(T

−1/2k
−1/2
T ) = op(k

−1
T ) (B.48)

Therefore, the sum of the four terms in (B.45) is at most Op(k
−1
T ). Under Assumption 6,

k
−1/2
T lT → 0 as T → ∞, the equality in (B.42) holds. Moreover, (B.43) follows from Lemma

A.6(a), the final limit result (B.44) follows from Lemma 1 since lT and K(·) also satisfy the
conditions needed in the proof of Lemma 1 (Assumption 5). ■

Proof of Theorem 7: To prove this theorem, it suffices to show

(i) a−1
T akTµTk

3/2
T ρ̂TT (ρ̂

∗
T − ρ̂T )

w→p 2cX/
(

Y
ν
+ 1

c
1(γ = 0)

)
;

(ii) (a−1
T akTµTk

3/2
T ρ̂TT )

2Λ̂∗ w→p 4c
2Vx/

(
Y
ν
+ 1

c
1(γ = 0)

)2
;
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First, consider (i). In light of the OLS formula for (ρ̂∗T − ρ̂T ), we need to work out the
asymptotics for the bootstrap data - we first prove a similar result as Theorem 2 for the
bootstrap data. Denoting 1/∞ = 0, we have the following joint convergence results:

(a′) (a2kTµ
2
Tk

3
T ρ̂

2T
T )−1

T∑
t=1

y∗2t−1
w→p

1

2c

[Y
ν
+

1

c
1(γ = 0)

]2
(b′) (akTµTk

2
T ρ̂

T
T )

−1

T∑
t=1

y∗t−1
w→p

1

c

[Y
ν
+

1

c
1(γ = 0)

]
(B.49)

(c′) (akT aTµTk
3/2
T ρ̂TT )

−1

T∑
t=1

y∗t−1u
∗
t

w→p X
[Y
ν
+

1

c
1(γ = 0)

]
(d′) a−1

T T−1/2

T∑
t=1

u∗
t

w→ U ∼ MN(0, σ2
u), σ2

u = C(1)2
∫ 1

0

g(r)2dr

where y∗t = µ̂T + ρ̂Ty
∗
t−1 + u∗

t , t = 1, . . . , T , y∗0 = y0. Note that we can define

d∗t = ρ̂Td
∗
t−1 + u∗

t , d∗0 = y∗0 (B.50)

so that y∗t = d∗t + µ̂T (ρ̂
t
T − 1)kT/ĉ. The results in (B.49) are the bootstrap counterparts to

those stated in Theorem 2, which build upon the following results that are entirely analogous
to Lemma A.1,

(a′′) (akT k
3/2
T ρ̂TT )

−1
T∑
t=1

T∑
j=t

ρ̂t−1−j
T u∗

j = op∗(1); (b
′′) (akT k

3/2
T ρ̂2TT )−1

T∑
t=1

T∑
j=t

ρ̂
2(t−1)−j
T u∗

j = op∗(1);

(c′′) (a2kT kT ρ̂
T
T )

−1
T∑
t=1

T∑
j=t

ρ̂t−1−j
T u∗

ju
∗
t = op∗(1); (d

′′) (akT kT ρ̂
T
T )

−2
T∑
t=1

d∗2t−1 = Y ∗2
T /2c+ op∗(1);

(e′′) (akT k
3/2
T ρ̂TT )

−1
T∑
t=1

d∗t−1 = Y ∗
T /c+ op∗(1); (f

′′) (akT aTkT ρ̂
T
T )

−1
T∑
t=1

d∗t−1u
∗
t = X∗

TY
∗
T + op∗(1).

The proofs of (a′′)-(f ′′) are entirely the same as the proofs of (a)-(f) in Lemma A.1, with an

additional result ĉ − c = kT (ρ̂T − ρT ) = aTa
−1
kT
(µTk

1/2
T ρTT )

−1a−1
T akTµTk

3/2
T ρTT (ρ̂T − ρT ) =

aTa
−1
kT
ρ−T
T

(
2cX

Y+ν/c1(γ=0)
+ op(1)

)
= Op(aTa

−1
kT
ρ−T
T ) = op(1), so we omit them for brevity.

Given (a′′)-(f ′′), to see how the proofs for the (a′)-(d′) are unchanged or follow with mi-
nor modifications to that of Theorem 2, we take (c′) as an example. Using the fact that
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µ̂T k
1/2
T

µT k
1/2
T

= 1 + ν−1Op(aTT
−1/2k

1/2
T ),

(akT aTµTk
3/2
T ρ̂TT )

−1

T∑
t=1

y∗t−1u
∗
t = (akT aTµTk

3/2
T ρ̂TT )

−1

T∑
t=1

(d∗t−1 + µ̂T (ρ̂
t−1
T − 1)kT/ĉ)u

∗
t

= (akT aTµTk
3/2
T ρ̂TT )

−1

T∑
t=1

d∗t−1u
∗
t +

µ̂Tk
1/2
T

µTk
1/2
T

(akT aTk
1/2
T ρ̂TT )

−1ĉ−1(
T∑
t=1

ρ̂t−1
T u∗

t −
T∑
t=1

u∗
t )

= X∗
TY

∗
T /(µTk

1/2
T ) + (1 + ν−1Op(aTT

−1/2k
1/2
T ))a−1

kT
ĉ−1a−1

T k
−1/2
T

T∑
t=1

ρ̂
−(T−t)−1
T u∗

t

−(1 + ν−1Op(aTT
−1/2k

1/2
T ))×Op∗(T

1/2(k
1/2
T ρ̂TT )

−1a−1
kT
)

= X∗
TY

∗
T /(µTk

1/2
T ) +X∗

T/(akT c) + ν−1Op∗(aTa
−1
kT
T−1/2k

1/2
T ) + op∗(1)
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where Op∗(aTa
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kT
T−1/2k

1/2
T ) = Op∗(T

−(1/2−γ)k
1/2−γ
T ) = op∗(1) by Assumption 3′. With the

above results (a′)-(d′) at hand, we thus have,
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2 = a−2

kT
(µTk

3/2
T ρ̂TT )

−2

(
T∑
t=1

y∗2t−1 − T−1(
T∑
t=1

y∗t−1)
2

)

= a−2
kT
(µTk

3/2
T ρ̂TT )

−2

T∑
t=1

y∗2t−1 − T−1kT [(akTµTk
3/2
T ρ̂TT )

−1

T∑
t=1

y∗t−1]
2

︸ ︷︷ ︸
Op∗(T−1kT )

w→p
1

2c

[Y
ν
+

1

c
1(γ = 0)

]2
(B.52)

which gives
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The proof of (ii) is similar in spirit to the proof of (i) in terms of showing that the limit
result based on the original data is transferable to the bootstrap data. We outline the main
steps of the argument. In particular, we need to show a similar result as Theorem 4 holds
for the bootstrap data, i.e.,

T (akT aTµTk
3/2
T ρ̂TT )

−2Ω̂∗ w→p Vx

[
Y

ν
+

1

c
1(γ = 0)

]2
(B.53)

The proof shares entirely the same logic as the proof of Theorem 4, and it builds on several
preliminary results which are analogous to Lemmas A.2-A.4 and A.6 with corresponding
quantities replaced by their bootstrap analogues. Next, in view of (B.52),
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(B.54)

Finally, combining (B.53) and (B.54),
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which gives (ii). The theorem then follows. ■
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Supplementary Appendix C: Additional Monte Carlo Results

Notes to Tables

1. Table C.1 reports empirical coverage rate of various inferential methods for ρ = 1 +
c/Tα, 95% nominal rate, T = 50, 100, 200, c = 0.5, α = 0.8, µT = 0.

2. Table C.2 reports empirical coverage rate of various inferential methods for ρ = 1 +
c/Tα, 95% nominal rate, T = 50, 100, 200, c = 0.5, α = 0.8, µT = T−α/4.

3. Table C.3 reports effective interval length ratio (benchmark: thac) of various inferential
methods for ρ = 1 + c/Tα, 95% nominal rate, T = 50, 100, 200, c = 0.5, α = 0.8,
µT = 0.

4. Table C.4 reports effective interval length ratio (benchmark: thac) of various inferential
methods for ρ = 1 + c/Tα, 95% nominal rate, T = 50, 100, 200, c = 0.5, α = 0.8,
µT = T−α/4.
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